lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

commit 7842b4c4c006088f2f73196b308104f4e9c2c007
parent 02fa111555aa61d9781330ad100046114aa634b3
Author: Alex Balgavy <alex@balgavy.eu>
Date:   Tue, 15 Feb 2022 18:11:08 +0100

Advanced logic lecture 3

Diffstat:
Mcontent/advanced-logic-notes/_index.md | 1+
Acontent/advanced-logic-notes/lecture-3.md | 49+++++++++++++++++++++++++++++++++++++++++++++++++
2 files changed, 50 insertions(+), 0 deletions(-)

diff --git a/content/advanced-logic-notes/_index.md b/content/advanced-logic-notes/_index.md @@ -5,6 +5,7 @@ title = 'Advanced Logic' 1. [Lecture 1](lecture-1) 2. [Lecture 2](lecture-2) 3. [Exercise 1](exercise-1) +4. [Lecture 3](lecture-3) I drew the graphs on these pages with [Graphviz](https://graphviz.org/). You can install Graphviz and run e.g. `dot < graph.dot -Tsvg > graph.svg` (also accepts input files as parameters). diff --git a/content/advanced-logic-notes/lecture-3.md b/content/advanced-logic-notes/lecture-3.md @@ -0,0 +1,49 @@ ++++ +title = 'Lecture 3' +template = 'page-math.html' ++++ +# Lecture 3 +## Preservation of truth and validity +### Substitution +Substitution for propositional variables +- σ : Var → Form +- T and ⊥ not substituted + +If (W,R), V ⊨ φ then not necessarily $(W,R) V \models \phi^{\sigma}$ + +But validity in a frame is preserved under substitution: if F ⊨ φ, then $F \models \phi^{\sigma}$ for any substitution σ. + +Validity is closed under substitution: if F ⊨ φ, then $F \models \phi^{\sigma}$ for any substitution σ. + +### Alternative semantics +The interpretation $[\![ \phi ]\!] _{M}$ of a formula φ in model M = (W,R,V) is set of worlds in which φ is true. + +M, w ⊨ φ iff $w \in [\![\phi]\!]_{M}$ + +M ⊨ φ iff $[\![\phi]\!]_{M} = W$ + +### Preservation of truth and validity +Local truth preserved by modus ponens: if M, w ⊨ φ → ψ and M, w ⊨ φ then M, w ⊨ ψ + +Global truth preserved by modus ponens and necessitation: if M ⊨ φ then M ⊨ □ φ + +Frame validity preserved by modus ponens, necessitation, and substitution: if F ⊨ φ then $F \models \phi^{\sigma}$. + +## Modal tautologies +⊨ □ (p → q) → □ p → □ q + +If ⊨ φ → ψ and ⊨ φ then ⊨ ψ + +If ⊨ φ then ⊨ □ φ + +If ⊨ φ then $\models \phi^{\sigma}$ + +## Characterizations of frame properties +If F reflexive then F ⊨ □ p → p. +This holds in the opposite. +So the formula □ p → p characterizes the frame property 'reflexivity'. + +In general, formula φ characterizes the frame property P means: F has property P iff F ⊨ φ. + +## Modal equivalence +Two states M, w and M', w' are modally equivalent if they satisfy the same formulas.