lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

lecture-3.md (1770B)


      1 +++
      2 title = 'Lecture 3'
      3 template = 'page-math.html'
      4 +++
      5 # Lecture 3
      6 ## Preservation of truth and validity
      7 ### Substitution
      8 Substitution for propositional variables
      9 - σ : Var → Form
     10 - T and ⊥ not substituted
     11 
     12 If (W,R), V ⊨ φ then not necessarily $(W,R) V \models \phi^{\sigma}$
     13 
     14 But validity in a frame is preserved under substitution: if F ⊨ φ, then $F \models \phi^{\sigma}$ for any substitution σ.
     15 
     16 Validity is closed under substitution: if F ⊨ φ, then $F \models \phi^{\sigma}$ for any substitution σ.
     17 
     18 ### Alternative semantics
     19 The interpretation $[\\![ \phi ]\\!] _{M}$ of a formula φ in model M = (W,R,V) is set of worlds in which φ is true.
     20 
     21 M, w ⊨ φ iff $w \in [\\![\phi]\\!]_{M}$
     22 
     23 M ⊨ φ iff $[\\![\phi]\\!]_{M} = W$
     24 
     25 ### Preservation of truth and validity
     26 Local truth preserved by modus ponens: if M, w ⊨ φ → ψ and M, w ⊨ φ then M, w ⊨ ψ
     27 
     28 Global truth preserved by modus ponens and necessitation: if M ⊨ φ then M ⊨ □ φ
     29 
     30 Frame validity preserved by modus ponens, necessitation, and substitution: if F ⊨ φ then $F \models \phi^{\sigma}$.
     31 
     32 ## Modal tautologies
     33 ⊨ □ (p → q) → □ p → □ q
     34 
     35 If ⊨ φ → ψ and ⊨ φ then ⊨ ψ
     36 
     37 If ⊨ φ then ⊨ □ φ
     38 
     39 If ⊨ φ then $\models \phi^{\sigma}$
     40 
     41 ## Characterizations of frame properties
     42 If F reflexive then F ⊨ □ p → p.
     43 This holds in the opposite.
     44 So the formula □ p → p characterizes the frame property 'reflexivity'.
     45 
     46 In general, formula φ characterizes the frame property P means: F has property P iff F ⊨ φ.
     47 If you need to prove that a formula characterizes a property, you need to prove this bi-implication in _both_ directions.
     48 
     49 ## Modal equivalence
     50 Two states M, w and M', w' are modally equivalent if they satisfy the same formulas.