lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

commit 4bd17472ed5dc293204bd7e8593ef99dd441e9cf
parent c2c30f46c76c4d55f6e867c0e04c52a1236b46f4
Author: Alex Balgavy <alex@balgavy.eu>
Date:   Sat, 13 Mar 2021 17:13:55 +0100

Update coding notes

Diffstat:
Mcontent/coding-and-cryptography/reed-solomon-codes.md | 17+++++++++++++++++
1 file changed, 17 insertions(+), 0 deletions(-)

diff --git a/content/coding-and-cryptography/reed-solomon-codes.md b/content/coding-and-cryptography/reed-solomon-codes.md @@ -64,3 +64,20 @@ a_{1}^{m+1} & a_{2}^{m+1} & \dots & a_{e}^{m+1} \\\\ a_{1}^{m+e} & a_{2}^{m+e} & \dots & a_{e}^{m+e} \end{bmatrix} \begin{bmatrix} b_{1} \\\\ b_{2} \\\\ \vdots \\\\ b_{e} \end{bmatrix} = \begin{bmatrix} s_{m+1} \\\\ s_{m+2} \\\\ \vdots \\\\ s_{m+e} \end{bmatrix}$ yielding the error magnitudes. + +## Transform approach to Reed-Solomon coes +Instead of vector being coefficients of polynomial, consider it representing function from set S to field $F = GF(2^r)$ + +Set of all functions from S to $F = GF(2^r )$ represented by polynomials of degree ≤ k-1 form function space of dimension k with basis $1, x, x^{2}, \dots, x^{{k-1}}$. + +Function space on S ⊆ GF($2^r$) of all polynomials degree ≤ k - 1 with coefficients from GF($2^r$) form linear (n, k, n-k+1) MDS code, where n = |S| ≤ $2^r$. + +Set of nth roots of unity in F = GF($2^r$) is {a ∈ F | aⁿ = 1} + +Let S be the set of nth roots of unity in GF($2^r$) +Function space of all polynomials in GF($2^r$)[x] of degree ≤ k-1 on S forms cyclic (n, k, n-k+1) code over GF($2^r$). + +Let β be primitive nth root of unity. +If $v_j = V( \beta^j )$ for $V(x) = V_0 + V_1 x + \dots + v_{{n-1}} x^{{n-1}}$ then $v_i = v( \beta^{{-1}} )$ where $v(x) = v_0 + v_1 x + \dots + v_{{n-1}} x^{{n-1}}$ + +Let S be set of nth roots of unity in GF($2^r$). Then function space of all polynomials of degree $<$ n - δ + 1 on S is cyclic MDS code with generator polynomial $g(x) = ( \beta + x) ( \beta^2 + x ) \dots ( \beta^{ \delta - 1}+x)$ where β is primitive root of unity.