lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

commit 160b714ff6f80a919ed860806d788bb9dde31ec0
parent e34c8bd4a764cdeac2426de3e31d38c17087f5b4
Author: Alex Balgavy <alex@balgavy.eu>
Date:   Tue,  8 Feb 2022 18:39:43 +0100

Remove redundant file

Diffstat:
Dcontent/advanced-logic-notes/lecture-1.md | 33---------------------------------
1 file changed, 0 insertions(+), 33 deletions(-)

diff --git a/content/advanced-logic-notes/lecture-1.md b/content/advanced-logic-notes/lecture-1.md @@ -1,33 +0,0 @@ -+++ -title = 'Lecture 1' -+++ - -# Intro - -Basic model logic operators: -- □: necessary, known, provable -- ◇: possible, considered possible - -- ◇ φ ⇔ ¬□ ¬φ -- □ φ ⇔ ¬◇ ¬φ - -# First-order propositional logic -Includes variables, T, ⊥, not, and, or, implication. -Proofs are given by structural induction. -Precedence is ¬, then ∧∨, then →. - -a valuation v : Var → {0,1} maps propositional variables to truth values. - -the semantics of a formula under a valuation is defined with ⟦p⟧ᵥ = v(p), with p ∈ Var - -if ⟦φ⟧ᵥ = 1, we write v ⊨ φ (read "v models φ") -- then, φ has a model, so φ is satisfiable - -If every model of all φᵢ is a model of ψ, we write φ₁,...,φn ⊨ ψ -- then ψ is a semantic consequence of φ₁,...,φn - -If v ⊨ φ for all valuations of v, then ⊨ φ (φ is a tautology) - -Soundness: ⊢ implies ⊨, proved by induction on length of proof - -Completeness: ⊨ implies ⊢, can be proven using consistency