lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

positional-numbering-system.md (844B)


      1 +++
      2 title = 'Positional numbering system'
      3 template = 'page-math.html'
      4 +++
      5 # Positional numbering system
      6 Z is a set of {-inf…0…inf} integers
      7 
      8 define an alphabet ∑
      9 
     10 A string X of n elements from ∑: Xn is in ∑n
     11 
     12 Apply Xn to a valuation function F
     13 
     14 For a base-10 system (radix = 10):
     15 
     16 $
     17 \begin{aligned}
     18 277_{10} &= \begin{array}{c|c|c} 10^{2} & 10^{1} & 10^{0} \\\\ \\hline 2 & 7 & 7 \end{array} \\\\
     19 &= 2(10^{2}) + 7(10) + 7(1)
     20 \end{aligned}
     21 $
     22 
     23 How do you choose a representation?
     24 - representation of special values/cases (e.g. 0)
     25 - range of values that can be represented
     26 - efficiency of implementation (common operations?)
     27 
     28 Unsigned integer representation:
     29 
     30 $
     31 F : x_{n-1} \cdot 2^{n-1} + x_{n-2} \cdot 2^{n-2} + \dots + x_{0} \cdot 2^{0}
     32 $
     33 
     34 Range: 2ⁿ-1 (total 2ⁿ, but one of those is 0)
     35 
     36 Can overflow, so have to detect — carry