lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

Sampling distributions & estimators.md (889B)


      1 +++
      2 title = 'Sampling distributions & estimators'
      3 template = 'page-math.html'
      4 +++
      5 
      6 # Sampling distributions & estimators
      7 
      8 sampling distribution of sample mean: probability distribution of random variable $\bar{X}_{n}$
      9 
     10 sampling distribution of sample proportion: probability distribution of $\hat{P}_{n}$
     11 
     12 a sample proportion is $\frac{\text{number of successes}}{\text{total number of observations}}$
     13 
     14 $\hat{P}_{n} \sim N(p, \frac{p(1-p)}{n})$, with p the number of successes
     15 
     16 ## Confidence intervals
     17 
     18 a way to estimate stuff. e.g. a 95% confidence interval means we are 95% confident that this interval has a true value of μ.
     19 
     20 $CI = \bar{x}_{n} \pm z \frac{s_n}{\sqrt{n}} $
     21 
     22 Z is the Z-score for the confidence level you want (find this with a table).
     23 The margin of error is whatever you add to/subtract from the sample mean.
     24 
     25 To get $s_{n}$, you can use the central limit theorem.