lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

Discrete probability distributions.md (800B)


      1 +++
      2 title = 'Discrete probability distributions'
      3 template = 'page-math.html'
      4 +++
      5 
      6 # Discrete probability distributions
      7 
      8 experiment: possible outcomes, probability of outcome
      9 random variable: possible values, probability of value
     10 Tables, e.g. for dice:
     11 
     12 <table>
     13 	<tr><th>x</th><th>P(X = x)</th></tr>
     14 	<tr><td>1</td><td>$\frac{1}{6}$</td></tr>
     15 	<tr><td>2</td><td>$\frac{1}{6}$</td></tr>
     16 	<tr><td>3</td><td>$\frac{1}{6}$</td></tr>
     17 	<tr><td>4</td><td>$\frac{1}{6}$</td></tr>
     18 	<tr><td>5</td><td>$\frac{1}{6}$</td></tr>
     19 	<tr><td>6</td><td>$\frac{1}{6}$</td></tr>
     20 </table>
     21 
     22 E(X): sum of (x times its probability)
     23 
     24 $Var(X) = \sum_{i}^{k} \lbrack x_{i}^{2} P(X = x_{i}) \rbrack - \mu^{2}$
     25 
     26 in english: to get variance, sum the (square of each value times its probability) and subtract the square of the mean.