lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

_index.md (8851B)


      1 +++
      2 title = 'Machine Learning'
      3 +++
      4 # Machine learning
      5 Exam - [cheat sheet](formula-cheat-sheet.pdf) available for formulas!
      6 
      7 * [Introduction](introduction)
      8      * [What is ML?](introduction#what-is-ml)
      9      * [Supervised ML](introduction#supervised-ml)
     10          * [Classification](introduction#classification)
     11          * [Regression](introduction#regression)
     12      * [Unsupervised ML](introduction#unsupervised-ml)
     13      * [What isn't ML?](introduction#what-isn-t-ml)
     14 * [Methodology](methodology)
     15      * [Performing an experiment](methodology#performing-an-experiment)
     16          * [What if you need to test many models?](methodology#what-if-you-need-to-test-many-models)
     17          * [The modern recipe](methodology#the-modern-recipe)
     18          * [Cross-validation](methodology#cross-validation)
     19      * [What to report](methodology#what-to-report)
     20          * [Classification](methodology#classification)
     21              * [What's a good error (5%)?](methodology#what-s-a-good-error-5)
     22              * [Performance metrics](methodology#performance-metrics)
     23                  * [Confusion matrix (contingency table)](methodology#confusion-matrix-contingency-table)
     24                  * [Precision and recall](methodology#precision-and-recall)
     25          * [Regression](methodology#regression)
     26          * [Errors & confidence intervals](methodology#errors-confidence-intervals)
     27      * [The no-free-lunch theorem and principle](methodology#the-no-free-lunch-theorem-and-principle)
     28      * [Cleaning your data](methodology#cleaning-your-data)
     29          * [Missing data](methodology#missing-data)
     30          * [Outliers](methodology#outliers)
     31          * [Class imbalance](methodology#class-imbalance)
     32      * [Choosing features](methodology#choosing-features)
     33      * [Normalisation & standardisation](methodology#normalisation-standardisation)
     34          * [Normalisation](methodology#normalisation)
     35          * [Standardisation](methodology#standardisation)
     36          * [Whitening](methodology#whitening)
     37      * [Dimensionality reduction](methodology#dimensionality-reduction)
     38 * [Linear models](linear-models)
     39      * [Defining a model](linear-models#defining-a-model)
     40      * [But which model fits best?](linear-models#but-which-model-fits-best)
     41          * [Mean squared error loss](linear-models#mean-squared-error-loss)
     42          * [Optimization & searching](linear-models#optimization-searching)
     43              * [Black box optimisation](linear-models#black-box-optimisation)
     44                  * [Random search](linear-models#random-search)
     45                  * [Simulated annealing](linear-models#simulated-annealing)
     46                   * [Parallel search](linear-models#parallel-search)
     47                   * [Branching search](linear-models#branching-search)
     48              * [Gradient descent](linear-models#gradient-descent)
     49              * [Classification losses](linear-models#classification-losses)
     50                  * [Least-squares loss](linear-models#least-squares-loss)
     51      * [Neural networks (feedforward)](linear-models#neural-networks-feedforward)
     52          * [Overview](linear-models#overview)
     53          * [Classification](linear-models#classification)
     54          * [Dealing with loss - gradient descent & backpropagation](linear-models#dealing-with-loss-gradient-descent-backpropagation)
     55      * [Support vector machines (SVMs)](linear-models#support-vector-machines-svms)
     56      * [Summary of classification loss functions](linear-models#summary-of-classification-loss-functions)
     57 * [Probability](probability)
     58      * [Probability basics](probability#probability-basics)
     59          * [Probability theory](probability#probability-theory)
     60      * [(Naive) Bayesian classifiers](probability#naive-bayesian-classifiers)
     61      * [Logistic "regression" (classifier)](probability#logistic-regression-classifier)
     62      * [Information theory](probability#information-theory)
     63          * [Maximum likelihood](probability#maximum-likelihood)
     64          * [Normal distributions (Gaussians)](probability#normal-distributions-gaussians)
     65              * [1D normal distribution (Gaussian)](probability#1d-normal-distribution-gaussian)
     66              * [Regression with Gaussian errors](probability#regression-with-gaussian-errors)
     67              * [n-D normal distribution (multivariate Gaussian)](probability#n-d-normal-distribution-multivariate-gaussian)
     68              * [Gaussian mixture model](probability#gaussian-mixture-model)
     69          * [Expectation-maximisation](probability#expectation-maximisation)
     70 * [Deep learning](deep-learning)
     71      * [Deep learning systems (autodiff engines)](deep-learning#deep-learning-systems-autodiff-engines)
     72          * [Tensors](deep-learning#tensors)
     73          * [Functions on tensors](deep-learning#functions-on-tensors)
     74      * [Backpropagation revisited](deep-learning#backpropagation-revisited)
     75          * [Multivariate chain rule](deep-learning#multivariate-chain-rule)
     76          * [Backpropagation with tensors - matrix calculus](deep-learning#backpropagation-with-tensors-matrix-calculus)
     77      * [Making deep neural nets work](deep-learning#making-deep-neural-nets-work)
     78          * [Overcoming vanishing gradients](deep-learning#overcoming-vanishing-gradients)
     79          * [Minibatch gradient descent](deep-learning#minibatch-gradient-descent)
     80          * [Optimizers](deep-learning#optimizers)
     81              * [Momentum](deep-learning#momentum)
     82              * [Nesterov momentum](deep-learning#nesterov-momentum)
     83              * [Adam](deep-learning#adam)
     84          * [Regularizers](deep-learning#regularizers)
     85              * [L2 regularizer](deep-learning#l2-regularizer)
     86              * [L1 regulariser](deep-learning#l1-regulariser)
     87              * [Dropout regularisation](deep-learning#dropout-regularisation)
     88      * [Convolutional neural networks](deep-learning#convolutional-neural-networks)
     89      * [Deep learning vs machine learning](deep-learning#deep-learning-vs-machine-learning)
     90      * [Generators](deep-learning#generators)
     91      * [Generative adversarial networks](deep-learning#generative-adversarial-networks)
     92          * [Vanilla GANs](deep-learning#vanilla-gans)
     93          * [Conditional GANs](deep-learning#conditional-gans)
     94          * [CycleGAN](deep-learning#cyclegan)
     95          * [StyleGAN](deep-learning#stylegan)
     96          * [What can we do with a generator?](deep-learning#what-can-we-do-with-a-generator)
     97      * [Autoencoders](deep-learning#autoencoders)
     98          * [Turning an autoencoder into a generator](deep-learning#turning-an-autoencoder-into-a-generator)
     99      * [Variational autoencoders](deep-learning#variational-autoencoders)
    100 * [Tree models and ensembles](tree-models-and-ensembles)
    101      * [Tree models](tree-models-and-ensembles#tree-models)
    102          * [Decision trees (categorical)](tree-models-and-ensembles#decision-trees-categorical)
    103          * [Regression trees (numeric)](tree-models-and-ensembles#regression-trees-numeric)
    104          * [Generalization hierarchy](tree-models-and-ensembles#generalization-hierarchy)
    105      * [Ensembling methods](tree-models-and-ensembles#ensembling-methods)
    106          * [Bagging](tree-models-and-ensembles#bagging)
    107          * [Boosting](tree-models-and-ensembles#boosting)
    108              * [AdaBoost (binary classifiers)](tree-models-and-ensembles#adaboost-binary-classifiers)
    109              * [Gradient boosting](tree-models-and-ensembles#gradient-boosting)
    110          * [Stacking](tree-models-and-ensembles#stacking)
    111 * [Sequences, models for sequential data](models-for-sequential-data)
    112      * [Sequences](models-for-sequential-data#sequences)
    113      * [Markov models](models-for-sequential-data#markov-models)
    114      * [Embedding models](models-for-sequential-data#embedding-models)
    115      * [Recurrent neural networks](models-for-sequential-data#recurrent-neural-networks)
    116      * [LSTMs](models-for-sequential-data#lstms)
    117 * [Matrix models](matrix-models)
    118      * [Recommender systems](matrix-models#recommender-systems)
    119      * [Matrix factorization](matrix-models#matrix-factorization)
    120          * [Bias control](matrix-models#bias-control)
    121          * [The 'cold start' problem](matrix-models#the-cold-start-problem)
    122      * [Graph models](matrix-models#graph-models)
    123      * [Validating embedding models](matrix-models#validating-embedding-models)
    124 * [Reinforcement learning](reinforcement-learning)
    125      * [What is reinforcement learning?](reinforcement-learning#what-is-reinforcement-learning)
    126      * [Approaches](reinforcement-learning#approaches)
    127          * [Random search](reinforcement-learning#random-search)
    128          * [Policy gradient](reinforcement-learning#policy-gradient)
    129          * [Q-learning](reinforcement-learning#q-learning)
    130      * [Alpha-stuff](reinforcement-learning#alpha-stuff)
    131          * [AlphaGo](reinforcement-learning#alphago)
    132          * [AlphaZero](reinforcement-learning#alphazero)
    133          * [AlphaStar](reinforcement-learning#alphastar)
    134 
    135 [Programming reference](programming-reference)