index.md (963B)
1 +++ 2 title = 'Relations' 3 +++ 4 # Relations 5 ## Cartesian product of sets 6 7 A × B := {<a,b> : a ∈ A ∩ b ∈ B} 8 9 A × A := A2 10 11 #(A×B) = #A ⋅ #B 12 13 **Binary relation:** relation of type A × B or A × A 14 15 **Relation in set A:** relation of type A × A 16 17 ## Infix notation: 18 x R y — <x, y> ∈ R 19 20 ## Visualisation 21 directed graphs & matrix: 22 23 ![screenshot.png](976a431a1cc75280f0fd2bca62a722da.png) 24 25 Venn diagrams & matrix: 26 27 ![screenshot.png](6e00283393a5ecb2b30c10ee0adc206a.png) 28 29 ## Inverse of binary relation 30 Inverse of R: R-1 := {<x,y> : <y,x> ∈ R} 31 32 R ⊆ A × B => R-1 ⊆ B × A 33 34 For Venn diagrams, you reverse the arrows. 35 36 ## Composite relations 37 R ∘ S := {<x,z> : x S y ∩ y R z for some y} 38 39 ![screenshot.png](22dc5693b6ce96c68d71fc69d2f9d0d8.png) 40 41 Composition is associative. 42 43 Inverse: (R ∘ S)-1 = S-1 ∘ R-1 44 45 ## Properties of relations 46 ![screenshot.png](565aefaad582e4e41d23e0d0c072b464.png) 47 ![screenshot.png](5dfd0a52a1c98207ba2d5b7cfdb10f97.png)