lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

Propositional logic.md (1499B)


      1 +++
      2 title = 'Propositional logic'
      3 +++
      4 
      5 # Propositional logic
      6 - Declarative sentence: true or false
      7 - Argument abstraction:  If p and not g, then r. Not r. p. Therefore q.
      8 - Argument formalisation: [ ( (p ∧ ¬ q) ➝ r ) ∧ (¬ r ∧ p) ) ] ➝ q
      9 - Symbols: ∧ (and), ∨ (or), ⨁ (xor), ¬ (not), ➝ (implication)
     10 
     11 Constructing formulae
     12 
     13 - every propositional variable is a formula
     14 - so is its negation
     15 - so are constructors wit operators
     16 
     17 Symbol priority: negation, then conjunction/disjunction, then implication
     18 
     19 Types of proposition:
     20 
     21 - Tautology (p ∨ ¬ p) is always true
     22 - Contradiction (p ∧ ¬ p) is always false
     23 - Contingency is neither a tautology nor a contradiction
     24 
     25 Rules of propositional logic
     26 
     27 - Implication ϕ ➝ Ψ  is
     28     - false if ϕ true and Ψ false
     29     - true otherwise
     30 - Bi-implication ϕ ⟷ Ψ (“ϕ if and only if Ψ”) is
     31     - true if ϕ and Ψ have same truth value
     32     - false otherwise
     33 - conjunction/disjunction (with conjunction as example)
     34     - p ∧ q ⟷ q ∧ p
     35     - p ∧ (q ∧ r) ⟷ (p ∧ q) ∧ r
     36     - p ∧ (q ∨ r) ⟷ (p ∧ q) ∨ (p ∧ r)
     37     - p ∧ p ⟷ p
     38     - p ∧ (p ∨ q) ⟷ p
     39 - negation
     40     - p ∧ ¬ p ⟷ F
     41     - p ∨ ¬ p ⟷ T
     42     - ¬ ¬ p ⟷ p
     43 - demorgan
     44     - ¬ p ∧ ¬ q ⟷ ¬ (p ∨ q)
     45     - ¬ (p ∧ q) ⟷ ¬ p ∨ ¬ q
     46 - identity
     47     - disjunction
     48         - p ∨ T ⟷ T
     49         - p ∨ F ⟷ p
     50     - conjunction
     51         - p ∧ T ⟷ p
     52         - p ∧ F ⟷ F
     53 - implication
     54     - p ➝ q == ¬ p ∨ q