lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

Functions.md (1037B)


      1 +++
      2 title = 'Functions'
      3 template = 'page-math.html'
      4 +++
      5 # Functions
      6 Function f: A ➝ B — binary relation f of type A × B such that every x ∈ A relates to at most one y ∈ B
      7 
      8 - domain: all possible input values
      9 - domain of definition: all input values that actually produce defined output
     10 - codomain: what could be the output of a function (like “integers” with f(x)=2x)
     11 - range/image: what actually is the output of a function (like “even numbers” with f(x)=2x)
     12 
     13 injective: if each element x of domain maps to at most one element y of codomain (“one-to-one”)
     14 
     15 surjective: if each element x of domain maps to at least one element y of codomain; the range is the codomain (“onto”)
     16 
     17 total: if the function is defined for all possible input values (domain)
     18 
     19 bijective: if the function is total, injective, and surjective
     20 
     21 
     22 ## Composition:
     23 (g o f) of f: A ➝ B and g: B ➝ C
     24 
     25 - $D_{g \circ f} \subseteq D_f$
     26 - $R_{g \circ f} \subseteq R_g$
     27 
     28 ## Inverse:
     29 a function has an inverse only if it’s injective (one-to-one)