sets.html (3607B)
1 <html> 2 <head> 3 <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script> 4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> 5 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/default.min.css"> 6 <link rel="Stylesheet" type="text/css" href="style.css" /> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 8 <script> 9 document.addEventListener('DOMContentLoaded', function() { 10 document.querySelectorAll('pre.code').forEach(function(item) { 11 hljs.highlightBlock(item) 12 }) 13 }); 14 </script> 15 <title>sets</title> 16 </head> 17 <body> 18 <style type="text/css"> 19 nav a { 20 text-align: left; 21 } 22 nav #name { 23 text-align: right; 24 float: right; 25 font-style: italic; 26 } 27 </style> 28 <nav> 29 <a href="index.html">Index</a> 30 <span id="name">Alex Balgavy</span> 31 </nav> 32 <hr> 33 <div class="content"> 34 35 <div id="Sets"><h2 id="Sets" class="header"><a href="#Sets">Sets</a></h2></div> 36 <p> 37 Recap from logic and sets: 38 </p> 39 <ul> 40 <li> 41 empty set Ø = {x | false} 42 43 <li> 44 universal set U = {x | true} 45 46 <li> 47 union A ∪ B = {x | x ∈ A or x ∈ B} 48 49 <li> 50 intersection A ∩ B = {x | x ∈ A and x ∈ B} 51 52 <li> 53 complement Ā = {x | x ∉ A} 54 55 <li> 56 difference A \ B = {x | x ∈ A and x ∉ B} 57 58 </ul> 59 60 <p> 61 Theorems: 62 </p> 63 <ul> 64 <li> 65 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 66 67 <li> 68 (A \ B) \ C = A \ (B ∪ C) 69 70 </ul> 71 72 <div id="Sets-Relations"><h3 id="Relations" class="header"><a href="#Sets-Relations">Relations</a></h3></div> 73 <p> 74 definitions of properties: 75 </p> 76 <ul> 77 <li> 78 reflexive: ∀x R(x,x) 79 80 <li> 81 symmetric: ∀x ∀y (R(x,y) → R(y,x)) 82 83 <li> 84 transitive: ∀x ∀y ∀z ((R(x,y) ∧ R(y,z)) → R(x,z)) 85 86 <li> 87 serial: ∀x ∃y R(x,y) 88 89 <li> 90 functional: ∀x ∃y (R(x,y) ∧ ∀z (R(x,z) → z=y)) 91 92 </ul> 93 94 <div id="Sets-Relations-Order types"><h4 id="Order types" class="header"><a href="#Sets-Relations-Order types">Order types</a></h4></div> 95 <p> 96 partial order: 97 </p> 98 <ul> 99 <li> 100 reflexive 101 102 <li> 103 transitive 104 105 <li> 106 antisymmetric 107 108 </ul> 109 110 <p> 111 total order: 112 </p> 113 <ul> 114 <li> 115 partial order 116 117 <li> 118 ∀ a,b (R(a,b) ∨ R(b,a)) 119 120 </ul> 121 122 <p> 123 strict partial order: partial order but irreflexive 124 </p> 125 126 <p> 127 strict total order: 128 </p> 129 <ul> 130 <li> 131 strict partial order 132 133 <li> 134 ∀ a,b (R(a,b) ∨ (a=b) ∨ R(b,a)) 135 136 </ul> 137 138 <p> 139 equivalence relation: 140 </p> 141 <ul> 142 <li> 143 reflexive (∀a, a ≡ A) 144 145 <li> 146 symmetric 147 148 <li> 149 transitive 150 151 </ul> 152 153 <div id="Sets-Natural numbers & induction"><h3 id="Natural numbers & induction" class="header"><a href="#Sets-Natural numbers & induction">Natural numbers & induction</a></h3></div> 154 <p> 155 Set of natural numbers is N ∈ (0,∞) 156 </p> 157 158 <p> 159 Principle of induction: let P be a property of natural numbers. Suppose P holds for zero, and whenever P holds for a natural number n, then it holds for its successor n+1. Then P holds for every natural number. 160 </p> 161 162 <p> 163 As a natural deduction rule: 164 </p> 165 166 <p> 167 <img src="img/induction-natural-deduction-rule.png" alt="Induction natural deduction rule" /> 168 </p> 169 170 <div id="Sets-Recursive definitions"><h3 id="Recursive definitions" class="header"><a href="#Sets-Recursive definitions">Recursive definitions</a></h3></div> 171 <p> 172 Let A be any set, suppose a is in A, and g: N × A → A. Then there is a unique function f satisfying: 173 </p> 174 <ul> 175 <li> 176 f(0) = a 177 178 <li> 179 f(n+1) = g(n, f(n)) 180 181 </ul> 182 183 <p> 184 Typically to prove something about a recursively defined function is to use induction. 185 </p> 186 187 </div> 188 </body> 189 </html>