lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

propositional-logic.html (7073B)


      1 <html>
      2 <head>
      3     <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script>
      4     <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5     <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/default.min.css">
      6     <link rel="Stylesheet" type="text/css" href="style.css" />
      7     <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
      8     <script>
      9       document.addEventListener('DOMContentLoaded', function() {
     10         document.querySelectorAll('pre.code').forEach(function(item) {
     11           hljs.highlightBlock(item)
     12         })
     13       });
     14     </script>
     15     <title>propositional-logic</title>
     16 </head>
     17 <body>
     18 <style type="text/css">
     19 nav a {
     20     text-align: left;
     21 }
     22 nav #name {
     23     text-align: right;
     24     float: right;
     25     font-style: italic;
     26 }
     27 </style>
     28     <nav>
     29     <a href="index.html">Index</a>
     30     <span id="name">Alex Balgavy</span>
     31     </nav>
     32     <hr>
     33     <div class="content">
     34     
     35 <div id="Propositional logic"><h2 id="Propositional logic" class="header"><a href="#Propositional logic">Propositional logic</a></h2></div>
     36 <div id="Propositional logic-Notation review"><h3 id="Notation review" class="header"><a href="#Propositional logic-Notation review">Notation review</a></h3></div>
     37 <ul>
     38 <li>
     39 <code>A, B, C</code> -- propositions
     40 
     41 <li>
     42 <code>A ∧ B</code> -- conjunction ("and")
     43 
     44 <li>
     45 <code>A ∨ B</code> -- disjunction ("or")
     46 
     47 <li>
     48 <code>A → B</code> -- implication ("if A then B")
     49 
     50 <li>
     51 <code>A ↔ B</code> -- bi-implication ("A iff B")
     52 
     53 <li>
     54 <code>¬ A</code> -- negation ("not A")
     55 
     56 <li>
     57 <code>⊥</code> -- false, falsum, nonsense, bullshit, the middle finger
     58 
     59 </ul>
     60 
     61 <div id="Propositional logic-Rules of inference"><h3 id="Rules of inference" class="header"><a href="#Propositional logic-Rules of inference">Rules of inference</a></h3></div>
     62 <p>
     63 "C is a logical consequence of A and B":
     64 </p>
     65 
     66 <p>
     67 <img src="img/logical-consequence.png" alt="Logical consequence" />
     68 </p>
     69 
     70 
     71 <table>
     72 <tr>
     73 <th>
     74 Implication
     75 </th>
     76 <th>
     77 Conjunction
     78 </th>
     79 <th>
     80 Negation
     81 </th>
     82 <th>
     83 Disjunction
     84 </th>
     85 <th>
     86 Bi-implication ("if and only if")
     87 </th>
     88 </tr>
     89 <tr>
     90 <td>
     91 <img src="img/implication-elimination.png" alt="Implication elimination" />
     92 </td>
     93 <td>
     94 <img src="img/conjunction-introduction.png" alt="Conjunction introduction" />
     95 </td>
     96 <td>
     97 <img src="img/negation-hypothetical-reasoning.png" alt="Negation hypothetical reasoning" />
     98 </td>
     99 <td>
    100 <img src="img/disjunction-introduction.png" alt="Disjunction introduction" />
    101 </td>
    102 <td>
    103 <img src="img/bi-implication-introduction.png" alt="Bi-implication introduction" />
    104 </td>
    105 </tr>
    106 <tr>
    107 <td>
    108 <img src="img/hypothesis.png" alt="Hypothesis" />
    109 </td>
    110 <td>
    111 <img src="img/and-elimination.png" alt="And elimination" />
    112 </td>
    113 <td>
    114 <img src="img/negation-elimination.png" alt="Negation elimination" />
    115 </td>
    116 <td>
    117 <img src="img/disjunction-elimination.png" alt="Disjunction elimination" />
    118 </td>
    119 <td>
    120 <img src="img/bi-implication-elimination.png" alt="Bi-implication elimination" />
    121 </td>
    122 </tr>
    123 </table>
    124 
    125 <p>
    126 Truth and falsity: from false, you can conclude anything, and from nothing, you can conclude true.
    127 </p>
    128 
    129 <p>
    130 <img src="img/falsum-elimination.png" alt="Falsum elimination" />, <img src="img/truth-introduction.png" alt="Truth introduction" />
    131 </p>
    132 
    133 <p>
    134 You can also derive this conjunction rule:
    135 </p>
    136 
    137 <p>
    138 <img src="img/conjunction-negation-rule.png" alt="Conjunction negation rule" />
    139 </p>
    140 
    141 <div id="Propositional logic-Forward and backward reasoning"><h3 id="Forward and backward reasoning" class="header"><a href="#Propositional logic-Forward and backward reasoning">Forward and backward reasoning</a></h3></div>
    142 <p>
    143 Backward reasoning: looking at the goal and seeing what rules need to be applied ("bottom-up")
    144 </p>
    145 
    146 <p>
    147 Forward reasoning: starting at some hypotheses/assumptions
    148 </p>
    149 
    150 <p>
    151 The general heuristic is to always work backwards, as much as possible. Only once you get stuck should you work from your assumptions or hypotheses.
    152 </p>
    153 
    154 <p>
    155 If all else fails, try proof by contradiction.
    156 </p>
    157 
    158 <div id="Propositional logic-Proof by contradiction"><h3 id="Proof by contradiction" class="header"><a href="#Propositional logic-Proof by contradiction">Proof by contradiction</a></h3></div>
    159 <p>
    160 Suppose a negation of a formula is true, prove that it's impossible, thereby proving the original formula.
    161 </p>
    162 
    163 <p>
    164 <img src="img/proof-by-contradiction.png" alt="Proof by contradiction" />
    165 </p>
    166 
    167 <p>
    168 RAA stands for <em>"reductio ad absurdum"</em>
    169 </p>
    170 
    171 <div id="Propositional logic-Vocab definitions"><h3 id="Vocab definitions" class="header"><a href="#Propositional logic-Vocab definitions">Vocab definitions</a></h3></div>
    172 <ul>
    173 <li>
    174 derivable: a formula φ is "derivable" if we can prove φ with no global hypotheses (bottom line is φ, everything is closed). Then we write ⊢ φ.
    175 
    176 <li>
    177 φ is derivable from hypotheses ψ₁..ψn if we can compute φ assuming ψ₁..ψn
    178 
    179 <li>
    180 formulas φ and ψ are logically equivalent if ⊢ φ ↔ ψ
    181 
    182 </ul>
    183 
    184 <div id="Propositional logic-Classical reasoning"><h3 id="Classical reasoning" class="header"><a href="#Propositional logic-Classical reasoning">Classical reasoning</a></h3></div>
    185 <p>
    186 Principles:
    187 </p>
    188 <ul>
    189 <li>
    190 Proof by contradiction: assume the contradiction, and show false, thereby proving the original.
    191 
    192 <li>
    193 Double negation elimination: ¬ ¬ A ↔ A.
    194 
    195 <li>
    196 Contrapositive: if A → B, then ¬ B → ¬ A
    197 
    198 </ul>
    199 
    200 <p>
    201 A general heuristic:
    202 </p>
    203 <ol>
    204 <li>
    205 Work backward from the conclusion, using introduction rules.
    206 
    207 <li>
    208 When you run out of stuff to do, work forward with elimination rules.
    209 
    210 <li>
    211 If you get stuck,
    212 
    213 </ol>
    214 <blockquote>
    215 <img src="img/go-go-proof-by-contradiction.jpg" alt="Proof by contradiction meme" style="width:20%" />
    216 </blockquote>
    217 <blockquote>
    218 (meme credit goes to Geo)
    219 </blockquote>
    220 
    221 <div id="Propositional logic-Syntax vs Semantics"><h3 id="Syntax vs Semantics" class="header"><a href="#Propositional logic-Syntax vs Semantics">Syntax vs Semantics</a></h3></div>
    222 <p>
    223 Syntax:
    224 </p>
    225 <ul>
    226 <li>
    227 derivation, proofs
    228 
    229 <li>
    230 Γ ⊢ A ("A is derivable from hypotheses in Γ")
    231 
    232 </ul>
    233 
    234 <p>
    235 Semantics:
    236 </p>
    237 <ul>
    238 <li>
    239 truth and falsity
    240 
    241 <li>
    242 truth assignment says which propositional letters are true
    243 
    244 <li>
    245 valuation says which formulas are true
    246 
    247 </ul>
    248 
    249 <div id="Propositional logic-Soundness and completeness"><h3 id="Soundness and completeness" class="header"><a href="#Propositional logic-Soundness and completeness">Soundness and completeness</a></h3></div>
    250 <p>
    251 provable: if there is a formal proof of a formula (syntactic)
    252 </p>
    253 
    254 <p>
    255 tautology/valid: if true under any truth assignment (semantic)
    256 </p>
    257 
    258 <p>
    259 soundness: if a formula is provable, it is valid (if ⊢ A, then ⊨ A)
    260 </p>
    261 
    262 <p>
    263 completeness: if a formula is valid, it is provable (if ⊨ A, then ⊢ A)
    264 </p>
    265 
    266 <p>
    267 Proving soundness is easier than proving completeness.
    268 </p>
    269 
    270 <p>
    271 A is a logical consequence of Γ if, given any truth assignment that makes every formula in Γ true, A is true.
    272 </p>
    273 
    274     </div>
    275 </body>
    276 </html>