lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (2036B)


      1 +++
      2 template = 'page-math.html'
      3 title = 'Modal logic'
      4 +++
      5 # Modal logic
      6 modal logic allows reasoning about dynamics -- futures, knowledge, beliefs, etc.
      7 
      8 modalities (unary connectives):
      9 * □ (box): sure, always, has to be, knows, guaranteed (kinda like ∀)
     10 * ◇ (diamond): possibly, sometimes, maybe, believes is possible, possible result (kinda like ∃)
     11 
     12 Kripke model `M = (W, R, L)` consists of:
     13 * W worlds
     14 * R accessibility relation
     15 * L labeling function: which propositional letters are true in which world (`w ⊩ p ↔ p ∈ L(w)`)
     16 
     17 Kripke models define truth _per world_.
     18 
     19 ![Kripke model and graph](kripke-model-and-graph.png)
     20 
     21 ## Truth in worlds
     22 `M, w ⊩ Φ` means formula Φ is true in world w of Kripke model M.
     23 
     24 ◇ Φ is true in world w if there exists a world w' such that R(w, w') and Φ is true in w'.
     25 
     26 □ Φ is true in world w if Φ is true in all worlds w' with R(w, w'). special case when world has no outgoing edge, ◇ Φ never holds and □ Φ always holds.
     27 
     28 ## Truth in Kripke models
     29 Φ is true in Kripke model `M = (W, R, L)` (i.e. M ⊨ Φ), iff x ⊩ Φ for every world x ∈ W.
     30 
     31 all propositional tautologies also hold in modal logic.
     32 
     33 ## Semantic implication/entailment
     34 M,w ⊨ ψ in every world w in every Kripke model where M,w ⊨ Φ₁, ..., M,w ⊨ Φn.
     35 
     36 modal validity: ⊨ ψ if in every world w in ever Kripke model M holds M,w ⊨ ψ.
     37 
     38 modal logical equivalence: `Φ ≡ ψ` if `M,w ⊨ Φ ↔ M,w ⊨ ψ`. in other words, Φ ≡ ψ ↔ Φ ⊨ ψ and ψ ⊨ Φ.
     39 
     40 ## Frames
     41 frame: Kripke model without labeling. `F = (W,R)`, W worlds, R accessibility relation
     42 
     43 Φ is valid in frame F (i.e. F ⊨ Φ) if for _every_ labeling L, Kripke model M = (W,R,L) makes Φ true.
     44 
     45 Correspondence of formulas and frame properties
     46 * reflexive:
     47   * F ⊨ □ p → p
     48   * F ⊨ p → ◇ p
     49 * symmetric:
     50   * F ⊨ q → □ ◇ q
     51   * F ⊨ ◇ □ p → p
     52 * transitive:
     53   * F ⊨ □ p → □ □ p
     54   * F ⊨ ◇ ◇ p → ◇ p
     55 * serial:
     56   * F ⊨ ◇ T
     57   * F ⊨ □ p → ◇ p
     58 * functional: □ p ↔ ◇ p
     59