modal-logic.html (4110B)
1 <html> 2 <head> 3 <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script> 4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> 5 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/default.min.css"> 6 <link rel="Stylesheet" type="text/css" href="style.css" /> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 8 <script> 9 document.addEventListener('DOMContentLoaded', function() { 10 document.querySelectorAll('pre.code').forEach(function(item) { 11 hljs.highlightBlock(item) 12 }) 13 }); 14 </script> 15 <title>modal-logic</title> 16 </head> 17 <body> 18 <style type="text/css"> 19 nav a { 20 text-align: left; 21 } 22 nav #name { 23 text-align: right; 24 float: right; 25 font-style: italic; 26 } 27 </style> 28 <nav> 29 <a href="index.html">Index</a> 30 <span id="name">Alex Balgavy</span> 31 </nav> 32 <hr> 33 <div class="content"> 34 35 <div id="Modal logic"><h2 id="Modal logic" class="header"><a href="#Modal logic">Modal logic</a></h2></div> 36 <p> 37 modal logic allows reasoning about dynamics -- futures, knowledge, beliefs, etc. 38 </p> 39 40 <p> 41 modalities (unary connectives): 42 </p> 43 <ul> 44 <li> 45 □ (box): sure, always, has to be, knows, guaranteed (kinda like ∀) 46 47 <li> 48 ◇ (diamond): possibly, sometimes, maybe, believes is possible, possible result (kinda like ∃) 49 50 </ul> 51 52 <p> 53 Kripke model <code>M = (W, R, L)</code> consists of: 54 </p> 55 <ul> 56 <li> 57 W worlds 58 59 <li> 60 R accessibility relation 61 62 <li> 63 L labeling function: which propositional letters are true in which world (<code>w ⊩ p ↔ p ∈ L(w)</code>) 64 65 </ul> 66 67 <p> 68 Kripke models define truth <em>per world</em>. 69 </p> 70 71 <p> 72 <img src="img/kripke-model-and-graph.png" alt="Kripke model and graph" /> 73 </p> 74 75 <div id="Modal logic-Truth in worlds"><h3 id="Truth in worlds" class="header"><a href="#Modal logic-Truth in worlds">Truth in worlds</a></h3></div> 76 <p> 77 <code>M, w ⊩ Φ</code> means formula Φ is true in world w of Kripke model M. 78 </p> 79 80 <p> 81 ◇ Φ is true in world w if there exists a world w' such that R(w, w') and Φ is true in w'. 82 </p> 83 84 <p> 85 □ Φ is true in world w if Φ is true in all worlds w' with R(w, w'). special case when world has no outgoing edge, ◇ Φ never holds and □ Φ always holds. 86 </p> 87 88 <div id="Modal logic-Truth in Kripke models"><h3 id="Truth in Kripke models" class="header"><a href="#Modal logic-Truth in Kripke models">Truth in Kripke models</a></h3></div> 89 <p> 90 Φ is true in Kripke model <code>M = (W, R, L)</code> (i.e. M ⊨ Φ), iff x ⊩ Φ for every world x ∈ W. 91 </p> 92 93 <p> 94 all propositional tautologies also hold in modal logic. 95 </p> 96 97 <div id="Modal logic-Semantic implication/entailment"><h3 id="Semantic implication/entailment" class="header"><a href="#Modal logic-Semantic implication/entailment">Semantic implication/entailment</a></h3></div> 98 <p> 99 M,w ⊨ ψ in every world w in every Kripke model where M,w ⊨ Φ₁, ..., M,w ⊨ Φn. 100 </p> 101 102 <p> 103 modal validity: ⊨ ψ if in every world w in ever Kripke model M holds M,w ⊨ ψ. 104 </p> 105 106 <p> 107 modal logical equivalence: <code>Φ ≡ ψ</code> if <code>M,w ⊨ Φ ↔ M,w ⊨ ψ</code>. in other words, Φ ≡ ψ ↔ Φ ⊨ ψ and ψ ⊨ Φ. 108 </p> 109 110 <div id="Modal logic-Frames"><h3 id="Frames" class="header"><a href="#Modal logic-Frames">Frames</a></h3></div> 111 <p> 112 frame: Kripke model without labeling. <code>F = (W,R)</code>, W worlds, R accessibility relation 113 </p> 114 115 <p> 116 Φ is valid in frame F (i.e. F ⊨ Φ) if for <em>every</em> labeling L, Kripke model M = (W,R,L) makes Φ true. 117 </p> 118 119 <p> 120 Correspondence of formulas and frame properties 121 </p> 122 <ul> 123 <li> 124 reflexive: 125 126 <ul> 127 <li> 128 F ⊨ □ p → p 129 130 <li> 131 F ⊨ p → ◇ p 132 133 </ul> 134 <li> 135 symmetric: 136 137 <ul> 138 <li> 139 F ⊨ q → □ ◇ q 140 141 <li> 142 F ⊨ ◇ □ p → p 143 144 </ul> 145 <li> 146 transitive: 147 148 <ul> 149 <li> 150 F ⊨ □ p → □ □ p 151 152 <li> 153 F ⊨ ◇ ◇ p → ◇ p 154 155 </ul> 156 <li> 157 serial: 158 159 <ul> 160 <li> 161 F ⊨ ◇ T 162 163 <li> 164 F ⊨ □ p → ◇ p 165 166 </ul> 167 <li> 168 functional: □ p ↔ ◇ p 169 170 </ul> 171 172 </div> 173 </body> 174 </html>