lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

meta-theorems-of-predicate-logic.html (2939B)


      1 <html>
      2 <head>
      3     <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script>
      4     <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5     <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/default.min.css">
      6     <link rel="Stylesheet" type="text/css" href="style.css" />
      7     <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
      8     <script>
      9       document.addEventListener('DOMContentLoaded', function() {
     10         document.querySelectorAll('pre.code').forEach(function(item) {
     11           hljs.highlightBlock(item)
     12         })
     13       });
     14     </script>
     15     <title>meta-theorems-of-predicate-logic</title>
     16 </head>
     17 <body>
     18 <style type="text/css">
     19 nav a {
     20     text-align: left;
     21 }
     22 nav #name {
     23     text-align: right;
     24     float: right;
     25     font-style: italic;
     26 }
     27 </style>
     28     <nav>
     29     <a href="index.html">Index</a>
     30     <span id="name">Alex Balgavy</span>
     31     </nav>
     32     <hr>
     33     <div class="content">
     34     
     35 <div id="Meta-Theorems of Predicate Logic"><h2 id="Meta-Theorems of Predicate Logic" class="header"><a href="#Meta-Theorems of Predicate Logic">Meta-Theorems of Predicate Logic</a></h2></div>
     36 <p>
     37 Entailment syntactically (⊢) and semantically (⊨)
     38 </p>
     39 <ul>
     40 <li>
     41 Γ ⊢ ψ: there is natural deduction derivation of ψ that only uses premises in Γ
     42 
     43 <li>
     44 Γ ⊨ ψ: for all M and l, if M ⊨l Φ for every Φ ∈ Γ, then M ⊨ ψ
     45 
     46 </ul>
     47 
     48 <p>
     49 Soundness and completeness:
     50 </p>
     51 <ul>
     52 <li>
     53 Γ ⊢ Φ ⇔ Γ ⊨ Φ
     54 
     55 <li>
     56 for all formulas Φ, every set Γ of formulas
     57 
     58 <li>
     59 soundness (correctness): left-to-right (⇒)
     60 
     61 <li>
     62 completeness: right-to-left (⇐)
     63 
     64 </ul>
     65 
     66 <p>
     67 soundness theorem:
     68 </p>
     69 <ul>
     70 <li>
     71 Γ ⊢ Φ ⇒ Γ ⊨ Φ
     72 
     73 <li>
     74 if there is natural deduction derivation of Φ from Γ, then there's no model M in which all formulas of Γ are true, but Φ is false
     75 
     76 <li>
     77 "correct" means not possible to derive false conclusion Φ from true premises Γ
     78 
     79 <li>
     80 prove by induction on derivation lengths
     81 
     82 </ul>
     83 
     84 <p>
     85 completeness theorem:
     86 </p>
     87 <ul>
     88 <li>
     89 Γ ⊨ Φ ⇒ Γ ⊢ Φ
     90 
     91 <li>
     92 derivations are strong enough to derive all valid semantic entailment statements
     93 
     94 <li>
     95 "complete" means more derivation rules are not necessary
     96 
     97 <li>
     98 proof is non-trivial
     99 
    100 </ul>
    101 
    102 <p>
    103 consistency and syntactical consistency
    104 </p>
    105 <ul>
    106 <li>
    107 Γ is consistent ⇔ Γ is syntactically consistent
    108 
    109 <li>
    110 Γ has a model ⇔ there is no derivation of ⊥ from Γ
    111 
    112 </ul>
    113 
    114 <p>
    115 semantical consistency:
    116 </p>
    117 <ul>
    118 <li>
    119 set Γ of formulas is consistent if there is model M and environment l such that M ⊨ Φ for all Φ ∈ Γ
    120 
    121 </ul>
    122 
    123 <p>
    124 syntactical consistency:
    125 </p>
    126 <ul>
    127 <li>
    128 set Γ of formulas is syntactically consistent if Γ ⊬ ⊥
    129 
    130 </ul>
    131 
    132 <p>
    133 compactness theorem:
    134 </p>
    135 <ul>
    136 <li>
    137 Γ is consistent ⇔ every finite subset Γ₀ ⊆ Γ si consistent
    138 
    139 </ul>
    140 
    141     </div>
    142 </body>
    143 </html>