incompleteness-theorem.html (2601B)
1 <html> 2 <head> 3 <script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/highlight.min.js"></script> 4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> 5 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.15.6/styles/default.min.css"> 6 <link rel="Stylesheet" type="text/css" href="style.css" /> 7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 8 <script> 9 document.addEventListener('DOMContentLoaded', function() { 10 document.querySelectorAll('pre.code').forEach(function(item) { 11 hljs.highlightBlock(item) 12 }) 13 }); 14 </script> 15 <title>incompleteness-theorem</title> 16 </head> 17 <body> 18 <style type="text/css"> 19 nav a { 20 text-align: left; 21 } 22 nav #name { 23 text-align: right; 24 float: right; 25 font-style: italic; 26 } 27 </style> 28 <nav> 29 <a href="index.html">Index</a> 30 <span id="name">Alex Balgavy</span> 31 </nav> 32 <hr> 33 <div class="content"> 34 35 <div id="Incompleteness theorem"><h2 id="Incompleteness theorem" class="header"><a href="#Incompleteness theorem">Incompleteness theorem</a></h2></div> 36 <p> 37 Consider sets of function and predicate symbols: 38 </p> 39 <ul> 40 <li> 41 F = {0, S, +, ·} 42 43 <li> 44 P = {<} 45 46 </ul> 47 48 <p> 49 with as intended model number theory N: 50 </p> 51 <ul> 52 <li> 53 domain of N is the natural numbers with 0 54 55 <li> 56 \(0^\mathbb{N} = 0\) 57 58 <li> 59 \(S^\mathbb{N} (n) = n + 1\) 60 61 <li> 62 \(+^\mathbb{N} (n,m) = n+m\) 63 64 <li> 65 \(\mathbb{N}(n,m) = n \cdot m\) 66 67 <li> 68 \(<^\mathbb{N} = \{ <n,m> | n,m \in \mathbb{N} \text{ such that }n < m \}\) 69 70 </ul> 71 72 <p> 73 One would like to have complete theory (deduction system) ⊢ for N that allows to derive all formulas that are true in N. 74 </p> 75 76 <p> 77 First incompleteness theorem: 78 </p> 79 <ul> 80 <li> 81 every axiomatizable and sound theory ⊢ of first-order logic 82 83 <li> 84 for number theory with language <F,P> 85 86 <li> 87 is incomplete: 88 89 <ul> 90 <li> 91 it contains sentences Φ that are true in N, but unprovable in ⊢: N ⊨ Φ, yet ⊬ Φ. 92 93 </ul> 94 </ul> 95 96 97 <p> 98 Second incompleteness theorem: 99 </p> 100 <ul> 101 <li> 102 for every axiomatizable theory ⊢ of first-order logic 103 104 <li> 105 for number theory with language <F,P> 106 107 <li> 108 that is rich enough to express its own consistency by a sentence Φ⊢ 109 110 <li> 111 it holds that either: 112 113 <ul> 114 <li> 115 ⊢ ⊥ (⊢ is inconsistent) 116 117 <li> 118 ⊬ Φ⊢ (hence ⊢ is incomplete) 119 120 </ul> 121 <li> 122 so first-order theories (based on predicate logic) of number theory can't prove their own consistency 123 124 </ul> 125 126 </div> 127 </body> 128 </html>