lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

vector-spaces.html (2583B)


      1 <!DOCTYPE html>
      2 <html>
      3 <head>
      4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5 <link rel="Stylesheet" type="text/css" href="style.css">
      6 <title>vector-spaces</title>
      7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8 </head>
      9 <body>
     10 
     11 <div id="Vector spaces"><h2 id="Vector spaces">Vector spaces</h2></div>
     12 <p>
     13 subspace of \(\Re^n\) is any set H in \(\Re^n\) that has properties:
     14 </p>
     15 <ol>
     16 <li>
     17 The zero vector is in H
     18 
     19 <li>
     20 For each u and v in H, the sum \(u + v\) is in H
     21 
     22 <li>
     23 For each u in H and each scalar c, the vector \(cu\) is in H
     24 
     25 </ol>
     26 
     27 <p>
     28 the zero subspace is the set that only contains zero vector in \(\Re^n\)
     29 </p>
     30 
     31 <div id="Vector spaces-Column space and null space of a matrix"><h3 id="Column space and null space of a matrix">Column space and null space of a matrix</h3></div>
     32 <p>
     33 column space: set of all linear combinations of the columns of a matrix. it's the <em>span</em> of the columns of the matrix.
     34 </p>
     35 
     36 <p>
     37 column space of m × n matrix is subspace of \(\Re^m\)
     38 </p>
     39 
     40 <p>
     41 null space: set of all solutions of equation \(Ax = 0\).
     42 </p>
     43 
     44 <p>
     45 null space of an m × n matrix is subspace of \(\Re^n\).
     46 </p>
     47 
     48 <p>
     49 to determine if p is in Nul A, check if Ap = 0. if so, p is in Nul A.
     50 </p>
     51 
     52 <div id="Vector spaces-Basis for a subspace"><h3 id="Basis for a subspace">Basis for a subspace</h3></div>
     53 <p>
     54 basis for subspace H of \(\Re^n\) is linearly independent set in H spanning H
     55 </p>
     56 
     57 <p>
     58 the pivot columns of a matrix form the basis for its column space.
     59 </p>
     60 
     61 <div id="Vector spaces-Coordinates"><h3 id="Coordinates">Coordinates</h3></div>
     62 <p>
     63 let \(H \in \Re^n\) be subspace with \(B = \{ b_1, \dots, b_p\}\). then for all x ∈ H, there are unique \(c_1, \dots, c_p\) such that \(x = c_1 b_2 + \dots + c_p b_p\). (to prove this theorem, use a contradiction on uniqueness)
     64 </p>
     65 
     66 <p>
     67 the coordinates of x w.r.t. B are \(c_1, \dots, c_p\).
     68 </p>
     69 
     70 <p>
     71 the coordinate system of x w.r.t. B is \([x]_B = \begin{bmatrix}c_1\\ \dots\\ c_p\end{bmatrix}\)
     72 </p>
     73 
     74 <div id="Vector spaces-Dimension of a subspace"><h3 id="Dimension of a subspace">Dimension of a subspace</h3></div>
     75 <p>
     76 let \(H \in \Re^n\) be a subspace with basis \(B=\{ b_1, \dots, b_p \}\). then every basis for H comprises p vectors.
     77 </p>
     78 
     79 <p>
     80 the dimension of H is the number of basis vectors in <em>any</em> basis for H.
     81 </p>
     82 
     83 <p>
     84 dim Col A = #pivot columns (rank A)
     85 </p>
     86 
     87 <p>
     88 dim Nul A = #free variables in Ax = 0
     89 </p>
     90 
     91 <p>
     92 Rank theorem: dim Col A + dim Nul A = #columns
     93 </p>
     94 
     95 </body>
     96 </html>