lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

symmetric-matrices.html (2363B)


      1 <!DOCTYPE html>
      2 <html>
      3 <head>
      4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5 <link rel="Stylesheet" type="text/css" href="style.css">
      6 <title>symmetric-matrices</title>
      7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8 </head>
      9 <body>
     10 
     11 <div id="Symmetric matrices"><h2 id="Symmetric matrices">Symmetric matrices</h2></div>
     12 <p>
     13 symmetric if \(A^T = A\) (also has to be square)
     14 </p>
     15 
     16 <div id="Symmetric matrices-Diagonalization of symmetric matrices"><h3 id="Diagonalization of symmetric matrices">Diagonalization of symmetric matrices</h3></div>
     17 <p>
     18 If A is symmetric, any two eigenvectors from two different eigenspaces are orthogonal.
     19 </p>
     20 
     21 <p>
     22 An n×n matrix is orthogonally diagonalizable iff A is symmetric.
     23 </p>
     24 
     25 <p>
     26 An n×n matrix A:
     27 </p>
     28 <ul>
     29 <li>
     30 has n real eigenvalues, including multiplicities
     31 
     32 <li>
     33 is orthogonally diagonalizable
     34 
     35 <li>
     36 dimension of eigenspace for each eigenvalue λ == multiplicity of λ as root of the characteristic equation (\(\det (A-\lambda I) = 0\))
     37 
     38 <li>
     39 eigenspaces are mutually orthogonal (i.e. eigenvectors corresponding to different eigenvalues are orthogonal)
     40 
     41 </ul>
     42 
     43 <div id="Symmetric matrices-Singular value decomposition"><h3 id="Singular value decomposition">Singular value decomposition</h3></div>
     44 <p>
     45 singular values: square roots of eigenvalues of \(A^T A\), denoted by \(\sigma_1, \dots, \sigma_n\) in ascending order. They are also the lengths of vectors \(Av_1, \dots, Av_n\).
     46 </p>
     47 
     48 <p>
     49 Suppose \(\{v_1, \dots, v_n\}\) is an orthonormal basis for \(\Re^n\) consisting of eigenvectors of \(A^T A\) in ascending order, and suppose A has r nonzero singular values. 
     50 </p>
     51 <ul>
     52 <li>
     53 Then \(\{Av_1, \dots, Av_n\}\) is orthogonal basis for Col A, and rank == r.
     54 
     55 <li>
     56 Then there exists Σ matrix m×n for which diagonal entries are first r singular values of A, and there exist matrices U (orthogonal, m²) and V (orthogonal, n²) such that \(A = U \Sigma V T\).
     57 
     58 <li>
     59 Col U are "left singular vectors" of A, Col V are "right singular vectors" of A.
     60 
     61 </ul>
     62 
     63 <p>
     64 Let A be n², then the fact that "A is invertible" means that:
     65 </p>
     66 <ul>
     67 <li>
     68 \((\text{Col} A)^\perp = \{ 0 \}\)
     69 
     70 <li>
     71 \((\text{Nul} A)^\perp = \Re^n\)
     72 
     73 <li>
     74 \(\text{Row} A = \Re^n\)
     75 
     76 <li>
     77 A has n nonzero singular values
     78 
     79 </ul>
     80 
     81 </body>
     82 </html>