lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.html (6329B)


      1 <!DOCTYPE html>
      2 <html>
      3 <head>
      4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5 <link rel="Stylesheet" type="text/css" href="style.css">
      6 <title>index</title>
      7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8 </head>
      9 <body>
     10 
     11 <div id="Linear Algebra">
     12 <h1 id="Linear Algebra">Linear Algebra</h1>
     13 <h3 class="name">Alex Balgavy</h3>
     14 </div>
     15 <p>
     16 If you need help with any of the topics, check out <a href="https://www.youtube.com/user/patrickJMT">PatrickJMT on Youtube</a>. He has some of the best math videos on the internet.
     17 </p>
     18 
     19 <ul>
     20 <li>
     21 <a href="introduction.html#Introduction">Introduction</a>
     22 
     23 <ul>
     24 <li>
     25 <a href="introduction.html#Introduction-Linear Equations">Linear Equations</a>
     26 
     27 <li>
     28 <a href="introduction.html#Introduction-Matrix notation">Matrix notation</a>
     29 
     30 <li>
     31 <a href="introduction.html#Introduction-Reducing a matrix">Reducing a matrix</a>
     32 
     33 <li>
     34 <a href="introduction.html#Introduction-Vectors">Vectors</a>
     35 
     36 </ul>
     37 <li>
     38 <a href="solution-sets-of-linear-systems.html#Solution sets of linear systems">Solution sets of linear systems</a>
     39 
     40 <ul>
     41 <li>
     42 <a href="solution-sets-of-linear-systems.html#Solution sets of linear systems-Homogeneous linear systems">Homogeneous linear systems</a>
     43 
     44 <li>
     45 <a href="solution-sets-of-linear-systems.html#Solution sets of linear systems-Parametric vector form">Parametric vector form</a>
     46 
     47 <li>
     48 <a href="solution-sets-of-linear-systems.html#Solution sets of linear systems-Linear independence">Linear independence</a>
     49 
     50 </ul>
     51 <li>
     52 <a href="linear-transformations.html#Linear transformations">Linear transformations</a>
     53 
     54 <li>
     55 <a href="matrix-operations.html#Matrix operations">Matrix operations</a>
     56 
     57 <ul>
     58 <li>
     59 <a href="matrix-operations.html#Matrix operations-Sums and scalar multiples">Sums and scalar multiples</a>
     60 
     61 <li>
     62 <a href="matrix-operations.html#Matrix operations-Powers of a matrix">Powers of a matrix</a>
     63 
     64 <li>
     65 <a href="matrix-operations.html#Matrix operations-Transpose of a matrix">Transpose of a matrix</a>
     66 
     67 <li>
     68 <a href="matrix-operations.html#Matrix operations-Inverse of a matrix">Inverse of a matrix</a>
     69 
     70 <li>
     71 <a href="matrix-operations.html#Matrix operations-Elementary matrices">Elementary matrices</a>
     72 
     73 </ul>
     74 <li>
     75 <a href="applications-to-computer-graphics.html#Applications to computer graphics">Applications to computer graphics</a>
     76 
     77 <ul>
     78 <li>
     79 <a href="applications-to-computer-graphics.html#Applications to computer graphics-Homogeneous coordinates">Homogeneous coordinates</a>
     80 
     81 <ul>
     82 <li>
     83 <a href="applications-to-computer-graphics.html#Applications to computer graphics-Homogeneous coordinates-2D">2D</a>
     84 
     85 <li>
     86 <a href="applications-to-computer-graphics.html#Applications to computer graphics-Homogeneous coordinates-3D">3D</a>
     87 
     88 </ul>
     89 <li>
     90 <a href="applications-to-computer-graphics.html#Applications to computer graphics-Composite transformations">Composite transformations</a>
     91 
     92 <li>
     93 <a href="applications-to-computer-graphics.html#Applications to computer graphics-Perspective projections">Perspective projections</a>
     94 
     95 </ul>
     96 <li>
     97 <a href="vector-spaces.html#Vector spaces">Vector spaces</a>
     98 
     99 <ul>
    100 <li>
    101 <a href="vector-spaces.html#Vector spaces-Column space and null space of a matrix">Column space and null space of a matrix</a>
    102 
    103 <li>
    104 <a href="vector-spaces.html#Vector spaces-Basis for a subspace">Basis for a subspace</a>
    105 
    106 <li>
    107 <a href="vector-spaces.html#Vector spaces-Coordinates">Coordinates</a>
    108 
    109 <li>
    110 <a href="vector-spaces.html#Vector spaces-Dimension of a subspace">Dimension of a subspace</a>
    111 
    112 </ul>
    113 <li>
    114 <a href="eigenvectors-eigenvalues.html#Eigenvectors &amp; eigenvalues">Eigenvectors &amp; eigenvalues</a>
    115 
    116 <ul>
    117 <li>
    118 <a href="eigenvectors-eigenvalues.html#Eigenvectors &amp; eigenvalues-Determinant">Determinant</a>
    119 
    120 <li>
    121 <a href="eigenvectors-eigenvalues.html#Eigenvectors &amp; eigenvalues-Similarity">Similarity</a>
    122 
    123 <li>
    124 <a href="eigenvectors-eigenvalues.html#Eigenvectors &amp; eigenvalues-Diagonalization">Diagonalization</a>
    125 
    126 </ul>
    127 <li>
    128 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares">Orthogonality &amp; least squares</a>
    129 
    130 <ul>
    131 <li>
    132 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Inner (dot) product &amp; uses">Inner (dot) product &amp; uses</a>
    133 
    134 <ul>
    135 <li>
    136 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Inner (dot) product &amp; uses-Length of a vector">Length of a vector</a>
    137 
    138 <li>
    139 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Inner (dot) product &amp; uses-Distance between vectors">Distance between vectors</a>
    140 
    141 </ul>
    142 <li>
    143 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal complement">Orthogonal complement</a>
    144 
    145 <li>
    146 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal sets">Orthogonal sets</a>
    147 
    148 <li>
    149 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal projections">Orthogonal projections</a>
    150 
    151 <ul>
    152 <li>
    153 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal projections-Orthogonal decomposition">Orthogonal decomposition</a>
    154 
    155 <li>
    156 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal projections-Best approximation">Best approximation</a>
    157 
    158 <li>
    159 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Orthogonal projections-When basis for W is an orthonormal set">When basis for W is an orthonormal set</a>
    160 
    161 </ul>
    162 <li>
    163 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Gram-Schmidt process">Gram-Schmidt process</a>
    164 
    165 <ul>
    166 <li>
    167 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Gram-Schmidt process-QR factorization">QR factorization</a>
    168 
    169 </ul>
    170 <li>
    171 <a href="orthogonality-least-squares.html#Orthogonality &amp; least squares-Least-squares problems">Least-squares problems</a>
    172 
    173 </ul>
    174 <li>
    175 <a href="symmetric-matrices.html#Symmetric matrices">Symmetric matrices</a>
    176 
    177 <ul>
    178 <li>
    179 <a href="symmetric-matrices.html#Symmetric matrices-Diagonalization of symmetric matrices">Diagonalization of symmetric matrices</a>
    180 
    181 <li>
    182 <a href="symmetric-matrices.html#Symmetric matrices-Singular value decomposition">Singular value decomposition</a>
    183 
    184 </ul>
    185 </ul>
    186 
    187 </body>
    188 </html>