lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

rational-agents.html (3272B)


      1 <!DOCTYPE html>
      2 <html>
      3 <head>
      4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5 <link rel="Stylesheet" type="text/css" href="style.css">
      6 <title>rational-agents</title>
      7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8 </head>
      9 <body>
     10 
     11 <div id="Rational agents"><h1 id="Rational agents">Rational agents</h1></div>
     12 
     13 <p>
     14 "A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date and prior environment knowledge."
     15 </p>
     16 
     17 <div id="Rational agents-Agents"><h2 id="Agents">Agents</h2></div>
     18 <p>
     19 agent function maps percept sequence to actions (\(f: P* \rightarrow A\))
     20 </p>
     21 
     22 <p>
     23 function is internally represented by agent program
     24 </p>
     25 
     26 <p>
     27 program runs on physical architecture to produce f
     28 </p>
     29 
     30 <div id="Rational agents-Rationality"><h2 id="Rationality">Rationality</h2></div>
     31 <p>
     32 what is rational at a specific time depends on:
     33 </p>
     34 <ul>
     35 <li>
     36 expected value of performance measure -- heuristics
     37 
     38 <li>
     39 actions and choices -- search
     40 
     41 <li>
     42 percept sequence to date -- learning
     43 
     44 <li>
     45 prior environment-- KR
     46 
     47 </ul>
     48 
     49 <p>
     50 rationality is not omniscience or perfection
     51 </p>
     52 
     53 <div id="Rational agents-Task environments"><h2 id="Task environments">Task environments</h2></div>
     54 
     55 <p>
     56 to design rational agent, we must specify environment (PEAS):
     57 </p>
     58 <ul>
     59 <li>
     60 performance: safety, destination, profits, legality, comfort
     61 
     62 <li>
     63 environment: streets, traffic, pedestrians, weather
     64 
     65 <li>
     66 actuators: steering, accelerating, brake, horn, speaker/display
     67 
     68 <li>
     69 sensors: video, sonar, speedometer, etc.
     70 
     71 </ul>
     72 
     73 <p>
     74 environment types:
     75 </p>
     76 <ul>
     77 <li>
     78 observable: fully (can detect all relevant aspects with sensors) or partially
     79 
     80 <li>
     81 deterministic: (yes or no)
     82 
     83 <li>
     84 static: (yes, no, semi)
     85 
     86 <li>
     87 discrete: (yes or no)
     88 
     89 <li>
     90 single-agent: (yes or no)
     91 
     92 </ul>
     93 
     94 <p>
     95 <img src="img/environment-types.png" alt="Environment types table" />
     96 </p>
     97 
     98 <p>
     99 For Schnapsen:
    100 </p>
    101 <ul>
    102 <li>
    103 observable: not fully
    104 
    105 <li>
    106 deterministic: yes
    107 
    108 <li>
    109 static: yes
    110 
    111 <li>
    112 discrete: yes
    113 
    114 <li>
    115 single-agent: no
    116 
    117 </ul>
    118 
    119 <div id="Rational agents-Agent types"><h2 id="Agent types">Agent types</h2></div>
    120 
    121 <div id="Rational agents-Agent types-Simple Reflex"><h3 id="Simple Reflex">Simple Reflex</h3></div>
    122 <p>
    123 select action on basis of <em>only the current percept</em>
    124 </p>
    125 
    126 <p>
    127 large reduction in possible percept/action situations
    128 </p>
    129 
    130 <p>
    131 implemented using condition-action rules
    132 </p>
    133 
    134 <p>
    135 only works if environment is fully observable, otherwise may result in infinite loops.
    136 </p>
    137 
    138 <div id="Rational agents-Agent types-Reflex &amp; State"><h3 id="Reflex &amp; State">Reflex &amp; State</h3></div>
    139 <p>
    140 to tackle partially observable environments, maintain internal state
    141 </p>
    142 
    143 <p>
    144 over time, update state using world knowledge.
    145 </p>
    146 
    147 <div id="Rational agents-Agent types-Goal-Based"><h3 id="Goal-Based">Goal-Based</h3></div>
    148 <p>
    149 agent needs a goal to know the desirable situations
    150 </p>
    151 
    152 <p>
    153 future is taken into account
    154 </p>
    155 
    156 <div id="Rational agents-Agent types-Learning"><h3 id="Learning">Learning</h3></div>
    157 <p>
    158 teach agents instead of instructing them
    159 </p>
    160 
    161 <p>
    162 very robust toward initially unknown environments.
    163 </p>
    164 
    165 </body>
    166 </html>