lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

probability-uncertainty.html (6861B)


      1 <!DOCTYPE html>
      2 <html>
      3 <head>
      4 <script type="text/javascript" async src="https://cdn.jsdelivr.net/gh/mathjax/MathJax@2.7.5/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
      5 <link rel="Stylesheet" type="text/css" href="style.css">
      6 <title>probability-uncertainty</title>
      7 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
      8 </head>
      9 <body>
     10 
     11 <div id="Probability and Uncertainty"><h1 id="Probability and Uncertainty">Probability and Uncertainty</h1></div>
     12 <p>
     13 one often has to deal with info that is underspecified, incomplete, vague, etc.
     14 </p>
     15 
     16 <p>
     17 logic by itself is not sufficient for these problems.
     18 </p>
     19 
     20 <div id="Probability and Uncertainty-Vagueness: Fuzzy Set Theory"><h2 id="Vagueness: Fuzzy Set Theory">Vagueness: Fuzzy Set Theory</h2></div>
     21 <p>
     22 model theory often based on set theory
     23 </p>
     24 
     25 <p>
     26 fuzzy set theory allows something to be <em>to some degree</em> an element of a set
     27 </p>
     28 
     29 <p>
     30 dominant approach to vagueness (mostly because wtf else can you do)
     31 </p>
     32 
     33 <div id="Probability and Uncertainty-Vagueness: Fuzzy Set Theory-Fuzzy sets"><h3 id="Fuzzy sets">Fuzzy sets</h3></div>
     34 <ul>
     35 <li>
     36 universe U, object x ∈ U
     37 
     38 <li>
     39 membership function for fuzzy set A is defined to be function \(f_A\) from U to [0,1]:
     40 
     41 <ul>
     42 <li>
     43 \(f_A(x)=y\): x is a member of A to degree y
     44 
     45 <li>
     46 \(f_A(x)=1\): x is certainly member of A
     47 
     48 <li>
     49 \(f_A(x)=0\): x is certainly not a member of A
     50 
     51 <li>
     52 \({x | f_A(x)&gt;0}\): support of A
     53 
     54 </ul>
     55 </ul>
     56 
     57 <p>
     58 modifiers (hedges)
     59 </p>
     60 
     61 <p>
     62 <img src="img/modifiers-hedges.png" alt="Example of modifiers' effects on graphs" />
     63 </p>
     64 
     65 <p>
     66 operations on fuzzy sets:
     67 </p>
     68 <ul>
     69 <li>
     70 complement: \(f_{\sim{A}}(x)=1-f_A(x)\)
     71 
     72 <li>
     73 union: \(f_{A\cup B}(x)=\max(f_A(x),f_B(x))\)
     74 
     75 <li>
     76 intersection: \(f_{A\cap B}(x)=\min(f_A(x), f_B(x))\)
     77 
     78 <li>
     79 subset: \(A\subset B \iff \forall{x}(f_A(x)\leq f_B(x))\)
     80 
     81 </ul>
     82 
     83 <p>
     84 semantics -- multivalued fuzzy logic
     85 </p>
     86 <ul>
     87 <li>
     88 v(¬ A) = 1-v(A)
     89 
     90 <li>
     91 v(A ∨ B) = max(v(A), v(B))
     92 
     93 <li>
     94 v(A ∧ B) = min(v(A), v(B))
     95 
     96 <li>
     97 v(A → B) = min(1, 1 - v(A) + v(B))
     98 
     99 </ul>
    100 
    101 <div id="Probability and Uncertainty-Vagueness: Fuzzy Set Theory-Fuzzy relations"><h3 id="Fuzzy relations">Fuzzy relations</h3></div>
    102 <p>
    103 fuzzy sets can denote fuzzy relations between objects. e.g. approximately equal, close to, much larger than, etc.
    104 </p>
    105 
    106 <p>
    107 fuzzy composition:
    108 </p>
    109 
    110 <p>
    111 \(f_{R \circ S} (\langle x,z\rangle ) = \max_{y \in Y} \min(f_R (\langle x,y\rangle ), f_S (\langle y,z\rangle ))\)
    112 </p>
    113 
    114 <p>
    115 hands-on example:
    116 </p>
    117 
    118 <p>
    119 <img src="img/fuzzy-composition.png" alt="Fuzzy composition table" />
    120 </p>
    121 
    122 <div id="Probability and Uncertainty-Vagueness: Fuzzy Set Theory-Evaluation"><h3 id="Evaluation">Evaluation</h3></div>
    123 <ul>
    124 <li>
    125 good -- flexible, coincides with classical set theory, sever successful applications of fuzzy control
    126 
    127 <li>
    128 bad -- requires many arbitrary choices, tends to blur differences between probabilistic uncertainty/ambiguity/vagueness
    129 
    130 </ul>
    131 
    132 <div id="Probability and Uncertainty-Uncertainties: Probability Theory"><h2 id="Uncertainties: Probability Theory">Uncertainties: Probability Theory</h2></div>
    133 <div id="Probability and Uncertainty-Uncertainties: Probability Theory-General"><h3 id="General">General</h3></div>
    134 <p>
    135 main interpretations of probability theory:
    136 </p>
    137 <ul>
    138 <li>
    139 optivist (frequentist) probability
    140 
    141 <ul>
    142 <li>
    143 frequentism: probability is only property of repeated experiments
    144 
    145 <li>
    146 probability of event: limit of <em>relative frequency</em> of occurrence of event, as number of repetitions goes to infinity
    147 
    148 </ul>
    149 <li>
    150 subjective probability
    151 
    152 <ul>
    153 <li>
    154 Bayesianism: probability is an expression of our uncertainty and beliefs
    155 
    156 <li>
    157 probability of event: <em>degree of belief</em> of idealized rational individual
    158 
    159 </ul>
    160 </ul>
    161 
    162 <p>
    163 sample space Ω: set of single outcomes of experiment
    164 </p>
    165 
    166 <p>
    167 event space E: things that have probability (subsets of sample space). if sample space is finite, event space is usually power set.
    168 </p>
    169 
    170 <div id="Probability and Uncertainty-Uncertainties: Probability Theory-Axioms of probability"><h3 id="Axioms of probability">Axioms of probability</h3></div>
    171 <p>
    172 for any event A, B:
    173 </p>
    174 <ul>
    175 <li>
    176 \(0 \leq P(A) \leq 1\)
    177 
    178 <li>
    179 \(P(\Omega) = 1\)
    180 
    181 <li>
    182 \(P(A \cup B) = P(A) + P(B) - P(A \cap B)\)
    183 
    184 </ul>
    185 
    186 <p>
    187 can derive:
    188 </p>
    189 <ul>
    190 <li>
    191 \(P({}) = 0\)
    192 
    193 <li>
    194 \(P(\Omega) = 1\)
    195 
    196 <li>
    197 \(\text{if} A \subset B, P(A) \leq P(B)\)
    198 
    199 </ul>
    200 
    201 <p>
    202 conditional probability ("A given B"):
    203 </p>
    204 
    205 <p>
    206 \(P(A|B) = \frac{P(A \cap B)}{P(B)}\)
    207 </p>
    208 
    209 <div id="Probability and Uncertainty-Uncertainties: Probability Theory-Joint probability distributions"><h3 id="Joint probability distributions">Joint probability distributions</h3></div>
    210 <p>
    211 for a set of random variables, it gives probability of every atomic even on those random variables.
    212 </p>
    213 
    214 <p>
    215 e.g. P(Toothache, Catch, Cavity):
    216 </p>
    217 
    218 <table>
    219 <tr>
    220 <th>
    221 &nbsp;
    222 </th>
    223 <th colspan="2">
    224 toothache
    225 </th>
    226 <th colspan="2">
    227 ¬ toothache
    228 </th>
    229 </tr>
    230 <tr>
    231 <td>
    232 &nbsp;
    233 </td>
    234 <td>
    235 catch
    236 </td>
    237 <td>
    238 ¬ catch
    239 </td>
    240 <td>
    241 catch
    242 </td>
    243 <td>
    244 ¬ catch
    245 </td>
    246 </tr>
    247 <tr>
    248 <td>
    249 cavity
    250 </td>
    251 <td>
    252 0.108
    253 </td>
    254 <td>
    255 0.012
    256 </td>
    257 <td>
    258 0.072
    259 </td>
    260 <td>
    261 0.008
    262 </td>
    263 </tr>
    264 <tr>
    265 <td>
    266 ¬ cavity
    267 </td>
    268 <td>
    269 0.015
    270 </td>
    271 <td>
    272 0.064
    273 </td>
    274 <td>
    275 0.144
    276 </td>
    277 <td>
    278 0.576
    279 </td>
    280 </tr>
    281 </table>
    282 
    283 <p>
    284 inference by enumeration:
    285 </p>
    286 <ul>
    287 <li>
    288 for any proposition Φ, sum atomic events where it's true -- \(P(\Phi) = \sum_{\omega : \omega \models \Phi} P(\omega)\)
    289 
    290 <li>
    291 compute conditional probability by selecting cells -- e.g. for P(¬ cavity | toothache), select toothache column and (¬ cavity) cells
    292 
    293 </ul>
    294 
    295 <p>
    296 use Bayes' rule for opposite conditionals (like finding P(disease | symptom) from P(symptom | disease))
    297 </p>
    298 
    299 <div id="Probability and Uncertainty-Uncertainties: Probability Theory-Bayesian networks"><h3 id="Bayesian networks">Bayesian networks</h3></div>
    300 <p>
    301 simple graphical notation for 
    302 </p>
    303 <ul>
    304 <li>
    305 conditional independence assertions
    306 
    307 <li>
    308 compact specification of full joint distributions
    309 
    310 </ul>
    311 
    312 <p>
    313 syntax:
    314 </p>
    315 <ul>
    316 <li>
    317 set of nodes, one per variable
    318 
    319 <li>
    320 directed acyclic graph, with a link meaning "directly influences"
    321 
    322 <li>
    323 conditional distribution for each node given its parents -- \(P(X_i | Parents(X_i))\)
    324 
    325 </ul>
    326 
    327 <p>
    328 topology example:
    329 </p>
    330 
    331 <p>
    332 <img src="img/bayesian-topology.png" alt="Bayesian network topology" />
    333 </p>
    334 
    335 <p>
    336 what does it mean?
    337 </p>
    338 <ul>
    339 <li>
    340 <em>weather</em> is independent of other variables
    341 
    342 <li>
    343 <em>toothache</em> and <em>catch</em> are conditionally independent given <em>cavity</em>.
    344 
    345 </ul>
    346 
    347 <div id="Probability and Uncertainty-Uncertainties: Probability Theory-Evaluation of probabilities"><h3 id="Evaluation of probabilities">Evaluation of probabilities</h3></div>
    348 <ul>
    349 <li>
    350 good -- sound theoretical basis, can be extended to decision-making, some good tools available
    351 
    352 <li>
    353 bad -- not always computationally easy, need lots of data which may be hard to get
    354 
    355 </ul>
    356 
    357 </body>
    358 </html>