lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

_index.md (7834B)


      1 +++
      2 title = "Intelligent Systems"
      3 +++
      4 # Intelligent Systems
      5 
      6 core topics:
      7   * search & heuristics
      8   * knowledge
      9   * adaptivity
     10 
     11 ![Decision making diagram](decision-making.png)
     12 
     13 Table of contents:
     14   * [Assessment information](assessment-info)
     15   * [State Space Representations Intro](state-space-repr-intro)
     16   * [State space search](state-space-search)
     17     * [Uninformed search strategies](state-space-search#uninformed-search-strategies)
     18       * [Breadth-first (BF) search](state-space-search#breadth-first-bf-search)
     19       * [Depth-first (DF) search](state-space-search#depth-first-df-search)
     20       * [Depth-limited search](state-space-search#depth-limited-search)
     21       * [Iterative deepening search](state-space-search#iterative-deepening-search)
     22     * [Informed search (heuristics)](state-space-search#informed-search-heuristics)
     23       * [A Search](state-space-search#a-search)
     24       * [A* Search](state-space-search#a-search-1)
     25     * [Adversarial search](state-space-search#adversarial-seach)
     26       * [Minimax](state-space-search#minimax)
     27         * [Setup](state-space-search#setup)
     28         * [Optimal strategies](setup#optimal-strategies)
     29         * [Evaluation](state-space-search#evaluation)
     30       * [Reducing problems of complexity with Minimax](state-space-search#reducing-problems-of-complexity-with-minimax)
     31         * [Cutting off search:](state-space-search#cutting-off-search)
     32         * [Alpha-Beta pruning (efficient Minimax)](state-space-search#alpha-beta-pruning-efficient-minimax)
     33       * [Search with no or partial information](state-space-search#search-with-no-or-partial-information)
     34         * [Perfect information Monte Carlo sampling (rdeep)](state-space-search#perfect-information-monte-carlo-sampling-rdeep)
     35       * [Games with chance](state-space-search#games-with-chance)
     36     * [Summary (Schnapsen)](state-space-search#summary-schnapsen)
     37     * [Search direction](state-space-search#search-direction)
     38   * [Rational agents](rational-agents)
     39     * [Agents](rational-agents#agents)
     40     * [Rationality](rational-agents#rationality)
     41     * [Task environments](rational-agents#task-environments)
     42     * [Agent types](rational-agents#agent-types)
     43       * [Simple Reflex](rational-agents#simple-reflex)
     44       * [Reflex & State](rational-agents#reflex-state)
     45       * [Goal-Based](rational-agents#goal-based)
     46       * [Learning](rational-agents#learning)
     47   * [Logical agents](logical-agents)
     48     * [What is logic](logical-agents#what-is-logic)
     49     * [Syntax](logical-agents#syntax)
     50       * [Propositional logic (PL)](logical-agents#propositional-logic-pl)
     51       * [First order logic (FOL)](logical-agents#first-order-logic-fol)
     52         * [Basic elements:](logical-agents#basic-elements)
     53         * [Sentences](logical-agents#sentences)
     54         * [Quantification](logical-agents#quantification)
     55           * [Universal quantification](logical-agents#universal-quantification)
     56           * [Existential quantification](logical-agents#existential-quantification)
     57           * [Quantifier Duality](logical-agents#quantifier-duality)
     58         * [Decidability vs undecidability](logical-agents#decidability-vs-undecidability)
     59         * [Knowledge engineering in FOL](logical-agents#knowledge-engineering-in-fol)
     60       * [Choice of formalisms](logical-agents#choice-of-formalisms)
     61       * [Propositionalising FOL](logical-agents#propositionalising-fol)
     62         * [Reduction to propositional inference](logical-agents#reduction-to-propositional-inference)
     63         * [Universal instantiation (UI):](logical-agents#universal-instantiation-ui)
     64         * [Existential instantiation (EI):](logical-agents#existential-instantiation-ei)
     65         * [Applying in Schnapsen - Strategies (examples)](logical-agents#applying-in-schnapsen-strategies-examples)
     66           * [Play Jack](logical-agents#play-jack)
     67           * [Play cheap](logical-agents#play-cheap)
     68           * [Play trump marriage](logical-agents#play-trump-marriage)
     69     * [Semantics](logical-agents#semantics)
     70       * [Interpretations & Models](logical-agents#interpretations-models)
     71       * [Entailment](logical-agents#entailment)
     72       * [Truth](logical-agents#truth)
     73       * [Validity](logical-agents#validity)
     74       * [Satisfiability](logical-agents#satisfiability)
     75     * [Calculus (algorithms for inference)](logical-agents#calculus-algorithms-for-inference)
     76       * [Properties of inference](logical-agents#properties-of-inference)
     77       * [Proof methods](logical-agents#proof-methods)
     78         * [Model checking & search](logical-agents#model-checking-search)
     79           * [Truth Tables for inference](logical-agents#truth-tables-for-inference)
     80           * [Effective proofs by model checking](logical-agents#effective-proofs-by-model-checking)
     81           * [Clause Normal Form (CNF)](logical-agents#clause-normal-form-cnf)
     82           * [DPLL algorithm](logical-agents#dpll-algorithm)
     83             * [Heuristic search in DPLL](logical-agents#heuristic-search-in-dpll)
     84           * [Satisfiability modulo theory](logical-agents#satisfiability-modulo-theory)
     85         * [Rule-based reasoning](logical-agents#rule-based-reasoning)
     86           * [Inference rules](logical-agents#inference-rules)
     87           * [Searching for proofs](logical-agents#searching-for-proofs)
     88           * [Forward and backward chaining](logical-agents#forward-and-backward-chaining)
     89           * [Resolution](logical-agents#resolution)
     90   * [Probability and Uncertainty](probability-uncertainty)
     91     * [Vagueness: Fuzzy Set Theory](probability-uncertainty#vagueness-fuzzy-set-theory)
     92       * [Fuzzy sets](probability-uncertainty#fuzzy-sets)
     93       * [Fuzzy relations](probability-uncertainty#fuzzy-relations)
     94       * [Evaluation](probability-uncertainty#evaluation)
     95     * [Uncertainties: Probability Theory](probability-uncertainty#uncertainties-probability-theory)
     96       * [General](probability-uncertainty#general)
     97       * [Axioms of probability](probability-uncertainty#axioms-of-probability)
     98       * [Joint probability distributions](probability-uncertainty#joint-probability-distributions)
     99       * [Bayesian networks](probability-uncertainty#bayesian-networks)
    100       * [Evaluation of probabilities](probability-uncertainty#evaluation-of-probabilities)
    101   - [Machine Learning](machine-learning)
    102     - [Learning problems](machine-learning#learning-problems)
    103     - [Methodology](machine-learning#methodology)
    104       - [Data](machine-learning#data)
    105       - [Experimentation](machine-learning#experimentation)
    106       - [Evaluation](machine-learning#evaluation)
    107     - [Machine Learning Steps:](machine-learning#machine-learning-steps)
    108       - [Choose the features](machine-learning#choose-the-features)
    109         - [Inductive learning method](machine-learning#inductive-learning-method)
    110         - [Classifying with naive Bayes](machine-learning#classifying-with-naive-bayes)
    111         - [Clustering with K-nearest neighbor](machine-learning#clustering-with-k-nearest-neighbor)
    112         - [Linear classifier](machine-learning#linear-classifier)
    113         - [Support vector machine](machine-learning#support-vector-machine)
    114       - [Choose the model (model search)](machine-learning#choose-the-model-model-search)
    115         - [Regression](machine-learning#regression)
    116         - [Gradient descent](machine-learning#gradient-descent)
    117     - [Neural Networks](machine-learning#neural-networks)
    118       - [Overview](machine-learning#overview)
    119       - [Training neural networks](machine-learning#training-neural-networks)
    120       - [Autoencoders: a NN architecture](machine-learning#autoencoders-a-nn-architecture)
    121       - [Trying it out](machine-learning#trying-it-out)
    122     - [The promise of depth](machine-learning#the-promise-of-depth)
    123   * [Ethics of AI](ethics)
    124     * [Sci-fi ethics (problems down the road)](ethics#sci-fi-ethics-problems-down-the-road)
    125     * [Today's problems](ethics#today-s-problems)
    126   * [Philosophy of AI](philosophy)