lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

perfect-related-codes.md (1548B)


      1 +++
      2 title = 'Perfect & related codes'
      3 template = 'page-math.html'
      4 +++
      5 # Perfect & related codes
      6 bounds for codes:
      7 - if ints t ≤ n and word v length n, then num words length n of max distance t from v is $\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}$. If t = n, then 2ⁿ.
      8 - all words of distance t from word v: add to v all words weight t
      9 - Hamming bound: C length n and distance d  = 2t + 1 or 2t + 2, then $|C| = \frac{2^{n}}{\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}}$ (i.e. max num of words length n distance d in code)
     10 - singleton bound: for (n, k, d) linear code, d-1 ≤ n-k
     11 - for (n, k, d) linear code:
     12     - d = n-k+1
     13     - every (n-k) rows of the parity check matrix are linearly independent
     14     - every k columns of generator matrix are linearly independent
     15     - C is MDS
     16 - there exists code length n dimension k distance d if $\binom{n-1}{0} + \binom{n-1}{1} + \dots + \binom{n-1}{d-2} \lt 2^{n-k}$
     17 
     18 ## Perfect codes
     19 perfect code: if length n, distance d = 2t+1, $|C| = \frac{2^{n}}{\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{t}}$
     20 
     21 if C nontrivial perfect code length n, distance d = 2t+1, then n=23 and d=7, or n=2ᴿ-1 for some R ≥ 2 and d=3
     22 
     23 if C perfect code length n distance d = 2t+1, then corrects all error patterns weight ≤ t and no others.
     24 
     25 ## Hamming codes
     26 Hamming code length 2ᴿ-1 if n = 2ᴿ-1, R ≥ 2, parity check matrix rows consist of all nonzero vectors length R
     27 
     28 - has dimension 2ᴿ-1-R, contains $2^{2^{R}-1-R}$ codewords
     29 - has distance d=3
     30 - is a perfect single error correcting code