lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (5248B)


      1 +++
      2 title = 'Semantics: truth and validity, game semantics for formula validity'
      3 template = 'page-math.html'
      4 +++
      5 # Semantics: truth and validity, game semantics for formula validity
      6 ## Game semantics
      7 This is an approach to determine if a formula φ holds in a pointed model M, w.
      8 
      9 We have:
     10 - model M = ((W,R), V), world w ∈ W, formula φ
     11 - two players:
     12     - Verifier V claims that φ is true in w (sort of like ∀)
     13     - Falsifier F claims that φ is false in w (sort of like ∃, try to find a _witness_)
     14 - position: pair (w, φ) with w ∈ W a world and φ a formula
     15 - move: from position (w, φ), determined by main operator of φ
     16 
     17 Assume that negation only applied to prop. variables.
     18 Transform formulas from ¬ □ p to ◇ ¬ p, ¬(p ∧ q) to ¬p ∨ ¬q.
     19 
     20 The position determines the move, e.g. in a position (t, ◇ φ), V chooses a successor _u_ of _t_, and play continues with (u, φ).
     21 For (t,p), if p is true in t then V wins, otherwise F wins.
     22 For (t, ¬p), if p is false in t then V wins, otherwise F wins.
     23 If a player should but cannot choose a successor, they lose.
     24 
     25 Who starts:
     26 - V: ∨, ◇
     27 - F: ∧, □
     28 
     29 A complete game tree for φ and (M,w) starts with (w,φ) and contains all possible moves.
     30 A strategy for player P is subset of steps for P, and it's a winning strategy if it ensures that P wins the game.
     31 
     32 To determine validity: φ is true in M in s ⇔ V has a winning strategy for M,s,φ.
     33 
     34 <details>
     35 <summary>Example: complete game tree</summary>
     36 
     37 Diagram:
     38 
     39 ![States](states.dot.svg)
     40 
     41 <details>
     42 <summary>Graphviz code</summary>
     43 
     44 <!-- :Tangle(dot) states.dot -->
     45 ```dot
     46 digraph states {
     47 1 -> 2
     48 1 -> 3
     49 2 -> 3
     50 3 -> 2
     51 3 -> 4
     52 4 -> 2
     53 4 -> 3
     54 }
     55 ```
     56 
     57 </details>
     58 
     59 Given:
     60 - question: formula ◇ p ∨ □ ◇ p, is it valid in state 2?
     61 - p is true in state 3.
     62 
     63 Complete game tree:
     64 
     65 ![Game tree](tree.dot.svg)
     66 
     67 <details>
     68 <summary>Graphviz code</summary>
     69 
     70 <!-- :Tangle(dot) tree.dot -->
     71 ```dot
     72 digraph gametree {
     73     top [label="[V] ◇ p ∨ □ ◇ p, 2"]
     74     l11 [label="[V] ◇ p, 2"]
     75     l12 [label="[F] □ ◇ p, 2"]
     76     top -> l11
     77     top -> l12
     78     l21 [label="p 3"]
     79     l22 [label="[V] ◇ p, 3"]
     80     l11 -> l21
     81     l12 -> l22
     82     l31 [label="Verifier wins"]
     83     l32 [label="p, 2"]
     84     l33 [label="p, 4"]
     85     l21 -> l31
     86     l22 -> l32
     87     l22 -> l33
     88     l41 [label="Falsifier wins."]
     89     l42 [label="Falsifier wins."]
     90     l32 -> l41
     91     l33 -> l42
     92 }
     93 ```
     94 
     95 </details>
     96 </details>
     97 
     98 ## Truth and validity
     99 There are different levels of validity:
    100 - (((W,R),V),w) ⊨ φ means φ is valid in a state/world w.
    101 - (W,R) ⊨ φ means φ is valid in a frame (W,R).
    102 - ⊨ φ means φ is valid universally (a tautology).
    103 
    104 If a part is omitted, it's implicitly universally quantified.
    105 
    106 Satisfiability:
    107 - φ _satisfiable in model M_ if there's a world w ∈ M such that M,w ⊨ φ
    108 - φ _satisfiable_ if there's a model M and a world w ∈ M such that M,w ⊨ φ
    109 - φ valid iff ¬ φ not satisfiable
    110 
    111 φ and ψ _semantically equivalent_ if they're only valid in the same worlds, i.e. ∀ M,w: M,w ⊨ φ ⇔ M,w ⊨ ψ
    112 
    113 <details>
    114 <summary>Example: showing universal validity</summary>
    115 
    116 Show universal validity of □ (φ → ψ) → (□ φ → □ ψ)
    117 
    118 1. let F = (W,R) be frame, V valuation on F, let x ∈ W.
    119 2. Assume a1: F,V,x ⊨ □ (φ → ψ)
    120 3. Assume a2: F,V,x ⊨ □ φ
    121 4. Aim to show F,V,x ⊨ □ ψ.
    122 5. □ is universal quantification, so take an arbitrary successor y ∈ W.
    123 6. If Rxy, aim to show y ⊨ ψ. If not, □ ψ holds.
    124 7. Have y ⊨ φ → ψ and y ⊨ φ.
    125 8. From a2, have y ⊨ φ.
    126 9. From a1, have have y ⊨ ψ.
    127 10. Hence x ⊨ □ ψ, hence x ⊨ □ φ → □ ψ. Hence formula is valid.
    128 
    129 </details>
    130 
    131 ## Preservation of truth and validity
    132 ### Substitution
    133 Substitution for propositional variables
    134 - σ : Var → Form
    135 - T and ⊥ not substituted
    136 
    137 If (W,R), V ⊨ φ then not necessarily $(W,R), V \models \phi^{\sigma}$
    138 
    139 But validity in a _frame_ is preserved under substitution: if F ⊨ φ, then $F \models \phi^{\sigma}$ for any substitution σ.
    140 
    141 ### Alternative semantics
    142 The interpretation $[\\![ \phi ]\\!] _{M}$ of a formula φ in model M = (W,R,V) is set of worlds in which φ is true.
    143 
    144 M, w ⊨ φ iff $w \in [\\![\phi]\\!]_{M}$
    145 
    146 M ⊨ φ iff $[\\![\phi]\\!]_{M} = W$
    147 
    148 ### Preservation of truth and validity
    149 Local truth preserved by modus ponens: if M, w ⊨ φ → ψ and M, w ⊨ φ then M, w ⊨ ψ
    150 
    151 Global truth preserved by modus ponens and necessitation: if M ⊨ φ then M ⊨ □ φ
    152 
    153 Frame validity preserved by modus ponens, necessitation, and substitution: if F ⊨ φ then $F \models \phi^{\sigma}$.
    154 
    155 ## Modal tautologies
    156 - ⊨ □ (p → q) → □ p → □ q
    157 - If ⊨ φ → ψ and ⊨ φ then ⊨ ψ
    158 - If ⊨ φ then ⊨ □ φ
    159 - If ⊨ φ then $\models \phi^{\sigma}$
    160 
    161 ## Characterizations of frame properties
    162 If F reflexive then F ⊨ □ p → p.
    163 This holds in the opposite.
    164 So the formula □ p → p characterizes the frame property 'reflexivity'.
    165 
    166 In general, "formula φ characterizes the frame property P" means: F has property P iff F ⊨ φ.
    167 If you need to prove that a formula characterizes a property, you need to prove this bi-implication in _both_ directions.
    168 
    169 ## Modal equivalence
    170 Two states M, w and M', w' are modally equivalent if they satisfy the same formulas.