lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (1237B)


      1 +++
      2 title = 'Multi-modal logic'
      3 +++
      4 # Multi-modal logic
      5 Assume set of labels I (which in a diagram are on the arrows).
      6 For every label i there is modality 〈i〉 so the formulas of multi-modal logic are, given I, defined for i in ∈ I.
      7 
      8 I-frame is pair (W, {Rᵢ | i ∈ I}).
      9 Rᵢ ⊆ W × W for every i ⊆ I.
     10 
     11 I-model is triple (W, {Rᵢ | i ⊆ I}, V).
     12 
     13 ## Truth and validity
     14 For M an I-model, M,w ⊨ φ is defined by induction on the definition of formulas.
     15 
     16 Clauses:
     17 - M,w ⊨ 〈a〉φ iff M,v ⊨ φ for some v with Rₐwv
     18 - M,w ⊨ [a]φ iff M,v ⊨ φ for all v with Rₐwv
     19 
     20 ## Example
     21 Use index set I = {a, b, c}.
     22 Give model with a world where the formula 〈a〉(〈b〉[a] p ∧ [c] ¬ 〈a〉p) is true.
     23 
     24 ![Example multimodal logic formula](example-multimodal-logic-formula.dot.svg)
     25 
     26 <details>
     27 <summary>Graphviz code</summary>
     28 
     29 <!-- :Tangle(dot) example-multimodal-logic-formula.dot -->
     30 ```dot
     31 digraph g {
     32 rankdir=LR
     33 1 -> 2 [label="a"]
     34 2 -> 3 [label="b"]
     35 }
     36 ```
     37 
     38 </details>
     39 
     40 
     41 For a bisimulation, when you do a step between states, they have to be with the same label (so the mimic step must have the same label).
     42 
     43 ## Geach axiom
     44 ◇ □ p → □ ◇ p.
     45 
     46 Valid in frame iff for every r ← s → u there is r → v ← u.