lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (2171B)


      1 +++
      2 title = 'Model transformations (tree unravelling, bisimulation contraction)'
      3 template = 'page-math.html'
      4 +++
      5 # Transforming and constructing models
      6 Disjoint union of models: combine models by union of states, relations, and valuations.
      7 A state in one of the models is modally equivalent with the state in the union.
      8 
      9 Generated submodel: starting from state w, only take its future.
     10 
     11 ## Tree unraveling
     12 Tree unravelling: unravelling of world s in (W,R,V) is:
     13 - $W' : (s_{1} \dots s_{n})$ with $s_{1} = s$ and $Rs_{i} s_{i+1}$
     14 - $R'$ relates ($s_{1} \dots s_{n}$) to ($s_{1} \dots s_{n+1}$) if $Rs_{n} s_{n+1}$
     15 - $V'(p) = \{ (s_{1} \dots s_{n} | s_{n} \in V(p) \}$
     16 - a state in (W',R',V') is bisimilar to $s_{n}$ in (W,R,V)
     17 - if φ is satisfiable in M,w it is satisfiable in tree unravelling of s in M
     18 
     19 Basically taking the states with possible paths between them, and drawing a tree.
     20 
     21 Example:
     22 
     23 <table>
     24 <tr> <th>Model</th> <th>Tree unraveling</th> </tr>
     25 
     26 <tr>
     27 <td>
     28 
     29 ![Model diagram](model-diagram.dot.svg)
     30 
     31 <details>
     32 <summary>Graphviz code</summary>
     33 
     34 <!-- :Tangle(dot) model-diagram.dot -->
     35 ```dot
     36 digraph g {
     37 1 -> 2
     38 1 -> 1
     39 }
     40 ```
     41 
     42 </details>
     43 </td>
     44 <td>
     45 
     46 ![Tree unraveling diagram](tree-unraveling.dot.svg)
     47 
     48 <details>
     49 <summary>Graphviz code</summary>
     50 
     51 <!-- :Tangle(dot) tree-unraveling.dot -->
     52 ```dot
     53 digraph g {
     54 a [label="(1)"]
     55 b [label="(1,2)"]; a -> b
     56 c [label="(1,1)"]; a -> c
     57 d [label="(1,1,2)"]; c -> d
     58 e [label="(1,1,1)"]; c -> e
     59 f [label="(1,1,1,2)"]; e -> f
     60 g [label="..."]; e -> g
     61 }
     62 ```
     63 
     64 </details>
     65 
     66 </td>
     67 </tr>
     68 </table>
     69 
     70 If two trees have the same structure, the models are bisimilar.
     71 
     72 ## Model contraction
     73 Bisimulation contraction
     74 - W' consists of equivalence classes |s| = { t such that $s \underline{\leftrightarrow} t$ }
     75 - R' relates |s| to |t| if Ruv for some u ∈ |s| and some v ∈ |t|
     76 - V'(p) = { |s| | s ∈ V(p) }
     77 
     78 Basically getting rid of 'unnecessary' states.
     79 See in this diagram, model on the left and contraction on the right:
     80 
     81 ![Model contraction](model-contraction.png)
     82 
     83 ## Validity and satisfiability
     84 If φ is satisfiable, then it is satisfiable using a model with at most $2^{s(\phi)}$ elements with s(φ) the number of subformulas of φ.