lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (3707B)


      1 +++
      2 title = 'Lecture 2'
      3 +++
      4 # Lecture 2
      5 ## Semantics: local truth
      6 Valuation notation:
      7 - V : Var → P(W) means Var → W → {0,1}
      8 - V(p,w) = 1 is the same as w ∈ V(p)
      9 
     10 A formula φ _characterizes_ a state x in model M if φ is true in x but not in other states of M.
     11 
     12 A formula φ _distinguishes_ state x from state y in a model M if φ is true in x but not in y.
     13 
     14 ![State diagram](example-characterizing.png)
     15 
     16 Above:
     17 - the formula 3 ⊨ □ ⊥ characterizes state 3
     18 - the formula 2 ⊨ ◇ □ ⊥ characterizes state 2
     19 
     20 ## Game semantics
     21 This is an approach to determine if a formula φ holds in a pointed model M, w.
     22 
     23 We have:
     24 - model M = ((W,R), V), world w ∈ W, formula φ
     25 - two players:
     26     - Verifier V claims that φ is true in w (sort of like ∀)
     27     - Falsifier F claims that φ is false in w (sort of like ∃, try to find a _witness_)
     28 - position: pair (w, φ) with w ∈ W a world and φ a formula
     29 - move: from position (w, φ), determined by main operator of φ
     30 
     31 Assume that negation only applied to prop. variables.
     32 Transform formulas from ¬ □ p to ◇ ¬ p, ¬(p ∧ q) to ¬p ∨ ¬q.
     33 
     34 The position determines the move, e.g. in a position (t, ◇ φ), V chooses a successor _u_ of _t_, and play continues with (u, φ).
     35 For (t,p), if p is true in t then V wins, otherwise F wins.
     36 For (t, ¬p), if p is false in t then V wins, otherwise F wins.
     37 If a player should but cannot choose a successor, they lose.
     38 
     39 Who starts:
     40 - V: ∨, ◇
     41 - F: ∧, □
     42 
     43 A complete game tree for φ and (M,w) starts with (w,φ) and contains all possible moves.
     44 A strategy for player P is subset of steps for P, and it's a winning strategy if it ensures that P wins the game.
     45 φ is true in M in s ⇔ V has a winning strategy for M,s,φ.
     46 
     47 ### Example
     48 Diagram:
     49 
     50 ![States](states.dot.svg)
     51 
     52 <details>
     53 <summary>Graphviz code</summary>
     54 
     55 <!-- :Tangle(dot) states.dot -->
     56 ```dot
     57 digraph states {
     58 1 -> 2
     59 1 -> 3
     60 2 -> 3
     61 3 -> 2
     62 3 -> 4
     63 4 -> 2
     64 4 -> 3
     65 }
     66 ```
     67 
     68 </details>
     69 
     70 Given:
     71 - formula ◇ p ∨ □ ◇ p, in state 2.
     72 - p is true in state 3.
     73 
     74 Complete game tree:
     75 
     76 ![Game tree](tree.dot.svg)
     77 
     78 <details>
     79 <summary>Graphviz code</summary>
     80 
     81 <!-- :Tangle(dot) tree.dot -->
     82 ```dot
     83 digraph gametree {
     84     top [label="[V] ◇ p ∨ □ ◇ p, 2"]
     85     l11 [label="[V] ◇ p, 2"]
     86     l12 [label="[F] □ ◇ p, 2"]
     87     top -> l11
     88     top -> l12
     89     l21 [label="p 3"]
     90     l22 [label="[V] ◇ p, 3"]
     91     l11 -> l21
     92     l12 -> l22
     93     l31 [label="Verifier wins"]
     94     l32 [label="p, 2"]
     95     l33 [label="p, 4"]
     96     l21 -> l31
     97     l22 -> l32
     98     l22 -> l33
     99     l41 [label="Falsifier wins."]
    100     l42 [label="Falsifier wins."]
    101     l32 -> l41
    102     l33 -> l42
    103 }
    104 ```
    105 
    106 </details>
    107 
    108 ## Truth and validity
    109 (((W,R),V),w) ⊨ φ means φ is valid in a point w.
    110 (W,R) ⊨ φ means φ is valid in a frame (W,R).
    111 ⊨ φ means φ is valid/tautology.
    112 If a part is omitted, it's implicitly universally quantified.
    113 
    114 Satisfiability:
    115 - φ _satisfiable in model M_ if there's a world w ∈ M such that M,w ⊨ φ
    116 - φ _satisfiable_ if there's a model M and a world w ∈ M such that M,w ⊨ φ
    117 - φ and ψ _semantically equivalent_ if ∀ M,w: M,w ⊨ φ ⇔ M,w ⊨ ψ
    118 - φ valid iff ¬ φ not satisfiable
    119 
    120 ### Example
    121 Show universal validity of □ (φ → ψ) → (□ φ → □ ψ)
    122 
    123 1. let F = (W,R) be frame, V valuation on F, let x ∈ W.
    124 2. Assume a1: F,V,x ⊨ □ (φ → ψ)
    125 3. Assume a2: F,V,x ⊨ □ φ
    126 4. Aim to show F,V,x ⊨ □ ψ.
    127 5. □ is universal quantification, so take an arbitrary successor y ∈ W.
    128 6. If Rxy, aim to show y ⊨ ψ. If not, □ ψ holds.
    129 7. Have y ⊨ φ → ψ and y ⊨ φ.
    130 8. From a2, have y ⊨ φ.
    131 9. From a1, have have y ⊨ ψ.
    132 10. Hence x ⊨ □ ψ, hence x ⊨ □ φ → □ ψ. Hence formula is valid.