lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (4732B)


      1 +++
      2 title = 'Homework 1'
      3 +++
      4 # Homework 1
      5 ## 1
      6 ### a
      7 - We aim to show M,v ⊨ ◇ (q ∧ ◇ p).
      8 - For the formula to hold, (q ∧ ◇ p) must hold in at least one successor of v.
      9 - v has two R-successors: v and y.
     10 - q ∧ ◇ p does not hold in v, because v ⊭ q.
     11 - However, y ⊨ q ∧ ◇ p: y ⊨ q, and Ryz and z ⊨ p, thus y ⊨ ◇ p.
     12 - Therefore, M,v ⊨ ◇ (q ∧ ◇ p).
     13 
     14 ### b
     15 ![Game tree](game-tree.dot.svg)
     16 
     17 If Verifier chooses the left branch (M, y ⊨ q ∧ ◇ p), he always wins.
     18 
     19 <details>
     20 <summary>Graphviz code</summary>
     21 
     22 <!-- :Tangle(dot) game-tree.dot -->
     23 ```dot
     24 graph t {
     25 t [label="M,v ⊨? ◇ (q ∧ ◇ p)", xlabel="V's turn"]
     26 tl [label="M,y ⊨? q ∧ ◇ p", xlabel="F's turn"]; t -- tl
     27 tll [label="{ M,y ⊨ q | Verifier wins }", shape="Mrecord"]; tl -- tll
     28 tlr [label="M, y ⊨? ◇ p", xlabel="V's turn"]; tl -- tlr
     29 tlrn [label="{ M, z ⊨ p | Verifier wins. }", shape="Mrecord"]; tlr -- tlrn
     30 
     31 tr [label="M, v ⊨? q ∧ ◇ p", xlabel="F's turn"]; t -- tr
     32 trl [label="{ M, v ⊭ q | Falsifier wins }", shape="Mrecord", xlabel="V's turn"]; tr -- trl
     33 trr [label="M, v ⊨? ◇ p", xlabel="V's turn"]; tr -- trr
     34 trrl [label="{ M, v ⊭ p | Falsifier wins. }", shape="Mrecord"]; trr -- trrl
     35 trrr [label="{M, y ⊭ p | Falsifier wins.}", shape="Mrecord"]; trr -- trrr
     36 }
     37 
     38 ```
     39 
     40 </details>
     41 
     42 ## 2
     43 ### a
     44 - Goal is to show ⊨ (◇ p → □ q) → (□ p → □ q).
     45 - Take an arbitrary frame F = (W,R), V a valuation on F, and x ∈ W. Let M = (F, V).
     46 - Assume M, x ⊨ (◇ p → □ q), where M = (F, V).
     47 - Aim to show M, x ⊨ □ p → □ q.
     48 - Assume M, x ⊨ □ p, aim to show M, x ⊨ □ q.
     49 - If x has no successors, ◇ p does not hold, hence M, x ⊨ □ q ex falso (also by assumption).
     50 - If x has successors, and p is valid in at least one of them, x ⊨ ◇ p, hence M, x ⊨ □ q by assumption.
     51 - If x has successors, an p is not valid in any of them, x ⊨ □ q because ◇ p is not valid in x.
     52 - Because the model and state are arbitrary, the formula is universally valid.
     53 
     54 ### b
     55 - Goal is to show ⊨ ¬ ◇ □ p → ◇ ◇ ¬ p.
     56 - Consider the frame F = ({x}, ∅) and valuation V(p) = ∅.
     57 - In state x, ◇ □ p is not valid, because x has no successors, hence x ⊨ ¬ ◇ □ p.
     58 - However, since x has no successors, x ⊭ ◇ ◇ ¬ p.
     59 - Therefore, the implication doesn't hold, and the formula is not universally valid.
     60 
     61 ## 3
     62 We aim to show that F ⊨ p → □ ◇ p iff F is symmetric: ∀ x, y ∈ W (Rxy → Ryx).
     63 
     64 * Assume that in a frame F = (W,R), F ⊨ p → □ ◇ p.
     65     - Assume towards a contradiction that F is not symmetric.
     66     - Then there must be states x, y ∈ W such that Rxy but not Ryx.
     67     - Take a model M = (F, V), with valuation V(p) = {x}.
     68     - Then, M, x ⊨ p.
     69     - x has successor y, but y does not have x as a successor, therefore M, y ⊭ p → □ ◇ p, so F ⊭ □ ◇ p.
     70     - This contradicts the assumption.
     71 
     72 * Assume that a frame F = (W, R) is symmetric.
     73     - We aim to show that F ⊨ p → □ ◇ p.
     74     - Take an arbitrary model M = (F, V) and an arbitrary state x ∈ M.
     75     - Assume that M, x ⊨ p and aim to show M, x ⊨ □ ◇ p.
     76     - If x has no successors, then x ⊨ □ ◇ p.
     77     - If there is y ∈ W such that Rxy, then we must also have Ryx by the assumption that F is symmetric.
     78     - Because x ⊨ p and y ⊨ p, x ⊨ □ ◇ p and y ⊨ □ ◇ p.
     79     - Because the state x and the model M are arbitrary, F ⊨ □ ◇ p.
     80 
     81 * We have therefore shown that the formula p → □ ◇ p characterizes the frame property "symmetry".
     82 
     83 ## 4
     84 ### a
     85 
     86 <table>
     87 <tr> <th>Model A</th> <th>Model B</th> <th>Model C</th> </tr>
     88 <tr>
     89 
     90 <td>
     91 
     92 ![Model A diagram](model-a.dot.svg)
     93 
     94 <details>
     95 <summary>Graphviz code</summary>
     96 
     97 <!-- :Tangle(dot) model-a.dot -->
     98 ```dot
     99 digraph g {
    100 a -> b
    101 b -> a
    102 a -> c
    103 b -> d
    104 }
    105 ```
    106 
    107 </details>
    108 </td>
    109 
    110 <td>
    111 
    112 ![Model B diagram](model-b.dot.svg)
    113 
    114 <details>
    115 <summary>Graphviz code</summary>
    116 
    117 <!-- :Tangle(dot) model-b.dot -->
    118 ```dot
    119 digraph g {
    120 1 -> 2
    121 2 -> 1
    122 1 -> 3
    123 1 -> 4
    124 }
    125 ```
    126 
    127 </details>
    128 
    129 </td>
    130 
    131 <td>
    132 
    133 ![Model C diagram](model-c.dot.svg)
    134 
    135 <details>
    136 <summary>Graphviz code</summary>
    137 
    138 <!-- :Tangle(dot) model-c.dot -->
    139 ```dot
    140 digraph g {
    141 1 [label="#"]
    142 1 -> b
    143 }
    144 ```
    145 
    146 </details>
    147 
    148 </td>
    149 </tr>
    150 </table>
    151 
    152 ### b
    153 - A, a ⊨ ◇ ◇ □ ⊥, but B, 1 ⊭ ◇ ◇ □ ⊥.
    154 - A, d ⊨ □ ⊥, so A, b ⊨ ◇ □ ⊥, so A, a ⊨ ◇ ◇ □ ⊥.
    155 - B, 4 ⊨ □ ⊥, so B, 1 ⊨ ◇ □ ⊥ but only B, 2 ⊨ ◇ ◇ □ ⊥, not state 1.
    156 
    157 ### c
    158 Because the states a ∈ A and 1 ∈ B are not modally equivalent as shown in exercise 4b above.
    159 
    160 ### d
    161 Take the set Z = {(a, #), (b, #), (c, b), (d, b)}.
    162 We claim that Z is a bisimulation, and (a, #) ∈ Z, therefore they are bisimilar.
    163 No proof is necessary here.