lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (2372B)


      1 +++
      2 title = 'Exercise 5'
      3 template = 'page-math.html'
      4 +++
      5 # Exercise 5
      6 ## 2b
      7 Show validity of: [a\*] ↔ φ ∧ [α][α\*]φ
      8 - Take a PDL model M = ((W,R),V) and let x ∈ W
      9 - Implication left-to-right:
     10     - assume x ⊨ [a\*]φ
     11     - so for every y ∈ W such that $(x,y) \in R_{\alpha *}$, y ⊨ φ
     12     - because M is a PDL model, $R_{\alpha \*} = (R_{\alpha})\* = R_{\alpha}^{0} \cup R_{\alpha}^{1} \cup R_{\alpha}^{2} \dots$
     13     - So $R_{\alpha}^{0} = Id \subseteq R_{\alpha \*}$ so $(x,x) \in R_{\alpha \*}$ so x ⊨ φ.
     14     - To prove x ⊨ [α][α\*]φ, take u ∈ W such that $(x,u) \in R_{\alpha}^{1}$.
     15     - Aim to show u ⊨ [α\*]φ
     16     - Take state v ∈ W such that $(u,v) \in R_{\alpha \*}$
     17     - We have $(x,u) \in (R_{\alpha} ; R_{\alpha \*}) \subseteq R_{\alpha \*}$
     18     - So $(x,v) \in R_{\alpha \*}$ so v ⊨ φ (because x ⊨ [α\*]φ)
     19 - Other way is similar.
     20 
     21 ## 4
     22 ### a
     23 
     24 
     25 $\begin{aligned}
     26 \delta                                                  &= \text{while $\lnot p$ do $b \cup ac$} \\\\
     27 \hat{R}_{\lnot p}                                       &= \\{(2,2), (3,3), (4,4)\\} \\\\
     28 \hat{R}\_{ac}                                           &= R\_{a}; R\_{c} = \\{(1,2), (2,3), (4,3)\\}; \\{(3,1)\\} \\\\
     29                                                         &= \\{(2,1), (4,1) \\} \\\\
     30 R\_{b \cup ac}                                          &= R\_{b} \cup R\_{ac} = \\{(3,4), (3,2), (2,1) \\} \cup \\{(2,1), (4,1)\\} \\\\
     31                                                         &= \\{(3,4), (3,2), (2,1), (4,1)\\} \\\\
     32 R\_{\lnot p; b \cup ac}                                 &= \\{ (2,2), (3,3), (4,4) \\}; \\{(3,4), (3,2), (2,1), (4,1) \\} \\\\
     33                                                         &= \\{(2,1), (3,4), (3,2), (4,1) \\} \\\\
     34 R\_{(\lnot p; b \cup ac)*}: R\_{\lnot p; b \cup ac}^{0} &= \\{(1,1), (2,2), (3,3), (4,4) \\} \\\\
     35 R\_{\lnot p; b \cup ac}^{1}                             &= \\{(2,1), (3,4), (3,2), (4,1)\\} \\\\
     36 R\_{\lnot p; b \cup ac}^{2}                             &= R\_{\lnot p; b \cup ac}^{1} \cup \\{(3,1)\\} \\\\
     37 R\_{p}                                                  &= \\{(1,1)\\} \\\\
     38 R\_{\delta}                                             &= \\{(1,1), (2,1), (4,1), (3,1) \\}
     39 \end{aligned}$
     40 
     41 
     42 ### b
     43 M ?⊨ [δ]p → p
     44 - No.
     45 - For example, 2 ⊨ [δ]p because $(2,1) \in R_{\delta}$ and 1 ⊨ p, but 2 ⊭ p.