lectures.alex.balgavy.eu

Lecture notes from university.
git clone git://git.alex.balgavy.eu/lectures.alex.balgavy.eu.git
Log | Files | Refs | Submodules

index.md (1548B)


      1 +++
      2 title = 'Exercise 4'
      3 +++
      4 # Exercise 4
      5 "show that x not derivable": use soundness and completeness.
      6 show that there is frame in the right class.
      7 
      8 ¬ □ ¬ □ p → p not derivable in S4 (I think reflexive + transitive)
      9 
     10 ![Diagram](diagram.dot.svg)
     11 
     12 <details>
     13 <summary>Graphviz code</summary>
     14 
     15 <!-- :Tangle(dot) diagram.dot -->
     16 ```dot
     17 digraph g {
     18 rankdir=LR
     19 1 -> 1
     20 2 -> 2
     21 2 -> 1
     22 2 [xlabel="(¬ p)"]
     23 }
     24 ```
     25 
     26 </details>
     27 
     28 Derivation of ¬ □ ¬ □ p → p in S5:
     29 1. S5 has as axiom ¬ □ p → □ ¬ □ p
     30 2. ¬ □ ¬ □ p → □ p. prop contrapositive 1
     31 3. □ p → p. axiom A1.
     32 4. ¬ □ ¬ □ p → p. prop 2, 3.
     33 
     34 ## Exercise sheet 5
     35 ### 1a
     36 N = (ℕ, <). ◇ □ p → □ ◇ p?
     37 1. take arbitrary valuation for N, M=(N,V).
     38 2. Take M ∈ N.
     39 3. Assume n ⊨ ◇ □ p. Goal to show n ⊨ □ ◇ p.
     40 4. Take x arbitrary successor of n. Goal x ⊨ ◇ p.
     41 5. x + n > x and x + n ⊨ p.
     42 6. So x ⊨ ◇ p...and so the formula valid.
     43 
     44 ### 4b
     45 Until is not modally definable in BML.
     46 * Until defined with M,t ⊨ φ U ψ ↔ ∃ v, t < v, v ⊨ ψ, ∀x t < x < v and x ⊨ φ.
     47 * temporal frame, so irreflexive and transitive
     48 
     49 Proof:
     50 - create two models M where a ⊨ p U q, M' where a' ⊭ p U q.
     51 - claim bisimilar by giving bisimulation, states a and a'.
     52 - because a and a' bisimilar, are modally equivalent.
     53 - suppose that until is definable in BML by a formula ζ(x, y)
     54 - then we have a ⊨ p U q, so a ⊨ ζ(p, q). Opposite for a'.
     55 - contradiction, a and a' modally equivalent but satisfy different formulas (i.e. a ⊨ ζ but a' ⊭ ζ).